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1 Executive Summary 
 

Portland General Electric (PGE) offers direct install smart thermostats to small and medium 
business customers as part of a demand response pilot program. In September 2019, Energy Trust 
of Oregon (Energy Trust) initiated a pilot and began providing incentives for a subset of these 
smart thermostats to test their potential as a cost-effective energy efficiency measure. Smart 
thermostats are theorized to save energy in commercial buildings through temperature setbacks, 
improving fan mode scheduling, and adjusting settings during unoccupied hours. 

Methodology 
This report presents an evaluation of this pilot program to determine energy and peak demand 
savings of incentivized thermostats, the characteristics that relate to these savings estimates, and 
how these savings change over time. To accomplish these objectives, we received and analyzed 
hourly interval energy electricity usage data and monthly gas usage data from PGE. Our billing 
analysis provides estimates of the change in electricity consumption (kWh), peak demand (kW), 
and gas consumption (therms) attributed to the installation of the smart thermostats.  

A total of 182 distinct sites (with 410 smart thermostats) had sufficient utility billing data and 
reliable baseline models (based on our model fit criteria) to be used to estimate energy savings 
and peak demand impacts. A total of 153 distinct sites (with 318 smart thermostats) had sufficient 
utility billing data and reliable baseline models to be used to estimate gas savings.  

Energy and demand savings estimates presented in this report may be influenced by the impacts 
of the COVID-19 pandemic. The pandemic led to significant changes in energy usage patterns for 
many businesses as they adapted to new public health mandates. We created a customized non-
routine adjustment for each site, which adjusts the model predictions based on the sites’ observed 
change in energy usage around the start of the pandemic. While this may be sufficient to produce 
accurate estimates of energy savings, the pandemic is a still a significant source of uncertainty that 
should not be ignored.  

The evaluation team conducted a separate analysis of smart thermostat data from the two 
thermostat manufacturers (Ecobee and Pelican). This engineering analysis verified that the smart 
thermostats are operating as expected in terms of scheduling fan modes and temperature 
setpoint changes. We plan to issue a revised memo with the findings from the engineering 
analysis, addressing the lingering questions about how the thermostats are used in practice.   

Findings 
We reviewed a sample of sites that installed the smart thermostats prior to the start of the 
pandemic (9 sites with gas data and 11 sites with electric data) and found statistically significant 
savings for both gas and electric energy usage. The electric energy savings during the months 
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leading up to the start of the COVID-19 pandemic align with the ex-ante savings estimate in Energy 
Trust’s measure approval document. This provides evidence in support of the current ex-ante 
energy savings. 

Across the full sample of sites in the billing analysis (n=182 for electric, and n=153 for gas), smart 
thermostats led to statistically significant reductions in energy usage across all days of the week. 
Additional findings include: 

• Average per-thermostat electric savings of 13.7 percent (3,847 kWh per year);1 
• Average per-thermostat gas savings of 11.8 percent (165 therms per year);  

• Peak demand savings of 0.93 kW per thermostat (26.7%) at 8 p.m. on the coldest days of 
the year;  

• Especially high savings during off-peak hours in both summer (0.54 kWh per thermostat, 
20.6%) and winter (0.55 kWh per thermostat, 22.9%); and  

• Higher energy savings for certain building types (medium offices and schools), and for 
Pelican smart thermostats (versus Ecobee).  

While energy savings were correlated with various characteristics, significant energy savings of 
more than 10 percent of baseline energy usage were detected at around half of the sites (54% of 
sites for electric, 48% of sites for gas). We are confident that the smart thermostats are saving at 
least as much electricity as expected in in the measure approval document (ex-ante savings), 
though gas savings were less consistent. 

 

  

 

 

 

1 These energy savings estimates are based on analysis of site-level utility energy meters, divided by the number of 
thermostats installed at the site as an estimate of change in energy usage per thermostat. 
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Memo 
To: Board of Directors 

From: Sarah Castor, Evaluation & Engineering Manager 
Wendy Gibson, Sr. Program Manager – Commercial  
Jackie Goss, Sr. Engineer 
 

cc:  

Date: February 23, 2023 

Re: Staff Response to the PGE Commercial Smart Thermostat Pilot Evaluation 

Energy Trust’s joint effort with PGE to install and test commercial smart thermostats began in 2019 as what 
Energy Trust now calls a coordinated research project, which is a test of a new technology or delivery method 
before expanding to a standard offer. This pilot evaluation was intended to inform Energy Trust’s energy 
savings estimates for commercial smart thermostats and provide an understanding of how savings vary by 
thermostat manufacturer, settings, building and HVAC system characteristics and business type. PGE also 
used the pilot to test the demand response capabilities of these devices.  

The pilot produced many smart thermostat installations between 2019 and early 2021, a period that was 
heavily influenced by the COVID-19 pandemic and related business closures, both temporary and permanent. 
The evaluated energy savings per thermostat were higher than expected, and sizable at around 14% of 
electric use and 12% of gas use. The evaluation was not designed to include a control or comparison group 
of similar customers and buildings that did not receive a smart thermostat, which makes it difficult to be certain 
how much of the evaluated savings are due to the smart thermostat and not related to reduced business 
operations during the pandemic. Results were also not sufficient to understand how the thermostats 
performed differently for various building/business types and sizes, thermostat settings (both before and after 
installation) or by thermostat manufacturer, given that there were relatively few Pelican thermostats in the 
evaluated projects. We believe more study of commercial smart thermostats is needed to confidently estimate 
savings from commercial smart thermostats. 

Energy Trust is planning to conduct another evaluation in 2024 to assess savings based on thermostat 
performance in 2022 and 2023, after the more significant impacts of the pandemic had passed and with a 
larger group of participants. We will also use different analysis method to estimate savings, likely with a 
matched comparison group of nonparticipants or future participants. The Existing Buildings program will 
continue to offer the measure pending results of the evaluation in 2024. 



Section 2: Background  

EVERGREEN ECONOMICS  Page 3 

2 Introduction & Background 
 

Portland General Electric (PGE) began offering direct install smart thermostats to small and 
medium business customers as part of a demand response pilot program. In September 2019, 
Energy Trust of Oregon (Energy Trust) initiated a pilot and began providing incentives for a subset 
of these smart thermostats to test their potential as a cost-effective energy efficiency measure. 
Smart thermostats are theorized to save energy in commercial buildings through temperature 
setbacks, improving fan mode scheduling, and adjusting settings during unoccupied hours. 

Study Objectives/Evaluation Goals 
This study was designed to produce rigorous estimates of energy and peak demand savings to 
assess the value of smart thermostats as energy efficiency measures for commercial customers on 
non-event days. PGE has commissioned a separate evaluation to assess the demand response 
functionality of these devices and event participation by individual customers.   

Table 1 provides a link between the research questions posed by Energy Trust and the evaluation 
tasks. The billing analysis provides estimated energy and demand savings realized at the meter, 
including variability in savings across and within sites. The engineering analysis dives deeper into 
the device schedules and temperature setpoints to help explain why the savings were (or were 
not) achieved.  

Table 1: Map of Research Questions to Evaluation Tasks 

Research Question 

Evaluation Task 

Billing 
Analysis 

Engineering 
Analysis 

What are the overall energy and demand savings of commercial smart 
thermostats? 

ü  

What are the distributions of energy and demand savings by major bins 
(e.g., weekday afternoons in the winter)? 

ü  

What are the trends in energy and demand savings results over time? ü ü 

What are the energy and demand savings impacts by thermostat 
manufacturer, thermostat settings, building characteristics (i.e., HVAC 
capacity, floor area, percent conditioned space), and business type? 

ü ü 

A separate memo will be issued with the methods and findings of the engineering analysis for each 
thermostat manufacturer, Pelican and Ecobee.   
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3 Methods  
 

This section describes the Evergreen team’s methodologies for assessing the impact of the 
commercial smart thermostats installed by Portland General Electric (PGE) that were also qualified 
for the Energy Trust study.2 The Evergreen team conducted impact analysis utilizing the project 
data sources (e.g., PGE pilot participant audit data, utility billing data). The program data were 
used to summarize participation across thermostats by manufacturer, building and customer 
characteristics, incentives provided, and savings claimed. The billing analysis provides estimates of 
the change in kWh, kW, and therms attributed to the installation of the smart thermostats. The 
engineering analysis verifies that the smart thermostats are operating as expected, in terms of 
scheduling fan modes and temperature setbacks.  

3.1 Data Sources 
Table 2 provides a summary of every data source we utilized for this evaluation, fields provided, 
sample coverage (e.g., number of premises and date range), and how the data were used.  

After receiving each data source, we conducted data quality checks before cleaning and preparing 
the data for analysis (e.g., flagging outliers, identifying and addressing missing values). Evergreen 
conducted all preparation and analysis using open-source software languages (R and PostgreSQL) 
to ensure reproducible results. All our code was tracked with version control software in a GitHub 
repository to provide a complete link between the raw data and the completed analysis presented 
in this report. We will deliver a copy of the final analysis dataset at the end of the evaluation.  

 

 

2 The Evergreen team includes Evergreen Economics and Driftless Energy.  
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Table 2: Data Sources for the Evaluation 

Data Source Unique Fields Coverage Intended Use 

PGE Pilot Participant 
Audit Data 

Customer and premise, 
device serial number, HVAC 
system details, existing 
thermostat type, installation 
date 

n=593 premises  
Aug 2018-Feb 
2021 

Link between data sources (e.g., 
AMI, application programming 
interface [API], project tracking 
data); identify units eligible for 
Energy Trust incentives, define the 
thermostat installation date 

Advanced Metering 
Infrastructure (AMI) 
Hourly Electric and 
Monthly Gas Billing 
Data 

Hourly electricity and 
monthly gas consumption 

n=591 premises3 
Oct 2018-May 
2022 

Billing analysis; estimates of energy 
and demand savings 

Demand Response 
Events 

Identify date and time of 
each Schedule 25 demand 
response event 

Jun 2020-May 
2022 

Flag usage during demand response 
events in the AMI and API data 

Measure Approval 
Document (MAD)  

Cost effectiveness calculator, 
requirements, and measure 
analysis 

Version 235.1 
Valid May 2019-
Dec 2020 

Define ex-ante savings (kWh) by 
HVAC type, business type, and 
heating zone 

Disqualified 
Thermostats List 

Premise ID, install date, 
reason for disqualification 

n=95 premises 
as of 8/6/21 

Identify all thermostats that do not 
qualify for Energy Trust incentives 

Solar Table Premise ID, rate code, and 
net energy meter (NEM) flag 

n=8 premises  Identify sites with solar to exclude 
from the billing analysis 

Energy Partner 
Customer List 

Premise ID, heating system 
type, and floor area 

n=100,975 
premises 

Participant characteristics, for use 
in segmentation analysis 

Project Tracking (PT) Premise ID, product code, ex-
ante savings, useful life 

n=325 premises 
Sept 2004-May 
2021 

Identify other measures installed 
during the study period 

National Oceanic and 
Atmospheric 
Administration (NOAA) 
Weather  

Hourly interval outdoor air 
temperature 

n=31 stations 
Jan 2018-May 
2022 

Weather normalization (actual 
weather) 

Typical Meteorological 
Year (TMY3) Weather 

Typical weather conditions, 
based on historical outdoor 
air temperature  

n=1,020 stations 
in the NW 

Weather normalization (typical 
weather) 
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3.2 Exclusion Criteria 

Thermostats Qualified for Energy Trust Incentives 
Our analysis was limited to the subset of thermostats incentivized by PGE that also met Energy 
Trust’s eligibility criteria for the energy efficiency portion of the pilot. The following rules were 
used to disqualify thermostats from the Energy Trust portion of the pilot program: 

• New construction (i.e., must be an existing building); 

• Commercial floor area above 200,000 square feet (excluding large facilities with centralized 
control systems); 

• Lodging with 24/7 operation (for the lack of savings opportunities); 
• Semi-conditioned spaces; 
• Heating Zone 2; 

• Not enrolled in the PGE Schedule 25 thermostat program; 

• Not one of the two approved thermostats (Pelican TS-200 and Ecobee EMS-SI); and/or 

• Does not satisfy all of the installation requirements (single ducted HVAC system, 20 or 
fewer heating or cooling zones with independent controls, smart thermostats control at 
least 50 percent of these zones, etc.) 

Billing Analysis Sample Attrition 
Evergreen implemented a series of exclusion criteria for participants with insufficient billing data 
or concurrent changes at the facility (e.g., other measures) that would prevent us from deriving a 
reliable estimate of energy savings attributable to the smart thermostat. Specifically, we excluded 
participants that: 

• Had less than 12 months of pre- or 9 months of post-installation data (which must include a 
full heating and cooling season and part of the shoulder seasons);  

• Had account turnover during the study period;  

• Were outliers in annual energy consumption (top and bottom 1 percent of sites);4 

• Had net-metered solar PV system present;  

• Installed other measures funded by Energy Trust during the study period above a minimum 
savings threshold of half of the ex-ante savings estimated for the smart thermostat (e.g., 940 

 

3 A premise is the equivalent of an electric account. A single site may have multiple premises that are associated with 
one or more account holders. Each premise is associated with one or more smart thermostats. 

4 All of the sites that qualified as outliers in energy consumption failed multiple exclusion criteria.  
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kWh for a non-grocery commercial building with resistance heat and cooling that installed 
two smart thermostats5);  

• Poor model fit (i.e., less reliable for meter-based savings); or 

• Had two or more statistically significant non-routine events (NREs) (i.e., a major shift in 
energy consumption not associated with the program intervention) that spanned more than 
10 percent of the baseline or post-period, which would negatively impact the reliability of 
savings estimates derived from billing analysis. 

We started with 588 sites with smart thermostats Table 3 provides a summary of participant 
attrition during the first phase of the analysis. Significant attrition was caused by installations that 
did not qualify for Energy Trust incentives (n=94 sites and 446 thermostats); leaving 413 sites that 
qualified for incentives. Another 75 sites (with 213 thermostats) were removed because they 
installed other energy efficiency measures during the study period (a two-year span) that had 
similar or higher ex-ante savings, making it too difficult to isolate the impact of the smart 
thermostats. Lastly, there were 24 sites that installed the thermostat so close to the start of the 
COVID-19 pandemic that it would not be possible to ascertain whether a change in energy usage 
was caused by the thermostat installation, the pandemic, or a combination of the two.   

Table 3: Participant Attrition from Billing Analysis by Exclusion Criteria, Phase 1 

Exclusion Criteria 
Sites 

Dropped Remaining Sites 

Site Received a Smart Thermostat from PGE -         588 

Do Not Qualify 
(DNQ) for 
Energy Trust 
Incentives 

Listed as DNQ by Energy Trust 94 494 

Commercial floor area above 200,000 square feet 0 494 

Not one of the two approved thermostat models 0 494 

Lodging with 24/7 operations, semi-conditioned 
space, or located in Heating Zone 2 52 442 

Not enrolled in the PGE Schedule 25 T-stat program 29 413 

Unsuitable for 
Billing Analysis 
(regardless of 
fuel) 

Concurrent installation of other measures 
incentivized by Energy Trust 75        338 

Installed the thermostat near the start of the COVID-
19 pandemic (non-routine adjustment not feasible) 24  314 

 

 

5 This example is based on the kWh savings listed in the Measure Approval Document for Direct Install Commercial 
Smart Thermostat PGE Pilot as of September 2020.  
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Table 4 continues the attrition process, looking now at the data for each fuel type separately. With 
the updated utility billing data we received, a much smaller number of thermostats were removed 
for having less than 12 months pre- or 9 months of post-installation data at the time of the 
evaluation (n=6 electric and n=118 gas). Most of the gas sites that were removed for insufficient 
gas data do not have any gas service (i.e., no gas data were expected).  

Another 101 electric and 23 gas sites were dropped from the measure analysis because the site-
level billing model did not pass our accuracy standards. This occurs more often in commercial and 
industrial buildings where energy usage is driven more by business operations than external 
factors that we can measure and control for in the regression (weather, hours of daylight). These 
sites are difficult to predict with meter-based savings and may be a better fit for building 
simulations, engineering analysis, or metering. See Section 3.3.1 Baseline Model Fit for more 
information on the model accuracy criteria.  

We adjusted for the impact of six different types of statistically significant non-routine events. We 
excluded 24 electric and 20 gas sites from the analysis because they had multiple statistically 
significant NREs, introducing too much uncertainty into the savings estimates. See Section 3.2.2 
Non-Routine Events for more information on how NREs were identified and adjusted.  

Table 4: Participant Attrition from Billing Analysis by Exclusion Criteria, Phase 2 

 Electric Gas 

Exclusion Criteria 
Sites 

Dropped 
Remaining 

Sites 
Sites 

Dropped  
Remaining 

Sites 

Received a smart thermostat, qualified for Energy Trust 
incentives, and suitable for analysis (Phase 1) - 314 - 314 

Unsuitable for 
Billing Analysis 
(by Fuel) 

Had less than 12 months of pre- or 9 
months of post-installation electric/gas 
data* 

6 308 118 196 

Had net-metered solar PV system 
present6 1  307  196 

Model did not pass accuracy standards 
(i.e., poor explanatory power) 101 206 23 173 

Have multiple statistically significant NREs 
(2+ major changes in the post-period) 24 182 20 153 

* Most of the gas sites that were removed for insufficient gas data do not have any gas service (i.e., no gas data were 
expected). 

 

6 Four additional sites had solar PV present, but the sites were dropped in the previous step for failing a different 
exclusion criterion. 
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In addition to site exclusions, we excluded individual observations of days: 

• With demand response events (as well as the day prior, if customers were notified the day 
ahead of events) from the models that are used to estimate energy efficiency savings, to 
avoid double-counting; and 

• At the start and end of daylight savings (two days per year). 

3.2.1 Outliers 
Evergreen also identified outliers in energy consumption or those with unusual energy 
consumption patterns during the study period. To start, we defined an outlier as any kWh reading 
that was more than three times the distance of the interquartile range (IQR) from the median 
interval measurement, based on the full time span of hourly interval AMI data for each site.7 Next, 
we manually reviewed all the flagged outliers with time-series plots and then adjusted any flags 
that appeared to be too sensitive (false positives) or not sensitive enough (false negatives) by site.  

Finally, we estimated the baseline models with and without these flagged outliers to assess the 
relative baseline model fit and determine if they had a statistically significant impact on the 
estimated energy savings. Based on this process, we found that inclusion (or exclusion) of outliers 
had no significant impacts on results. Outlier values have been retained throughout our analysis.  

3.2.2 Non-Routine Events 
We used model residual cumulative sum plots to identify NREs at each participant site. Model 
residuals are the difference between the actual energy use and the model prediction. The 
cumulative sum of residuals should be randomly distributed around zero during the baseline 
period and then negative sloping during the post-period, under the assumption that savings are 
accumulating. A change in the slope is evidence of an event that is not captured in the model (i.e., 
a change other than weather, number of daylight hours, etc.). This option is useful at identifying 
the presence of an NRE as well as the start and end dates and the magnitude of the event. We 
have categorized NREs on the basis of three criteria:  

1. Cause – Whether the NRE started around the beginning of the COVID-19 pandemic; 
2. Duration – Whether the NRE was temporary or lasted until the completion of the study; 

and 
3. Period – Whether the NRE started in the baseline (prior to the thermostat install) or post-

period. 

 

7 This definition of an outlier is based on CalTRACK rule 2.3.6. The IQR is a measurement of variability. The rank-ordered 
data are divided into four equal parts called quartiles. The IQR measures the distance between the first and third 
quartiles, corresponding to the 25th and 75th percentiles, containing the middle 50 percent of observations. 
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Figure 1 shows an example of model residuals for a single customer during the post-period (black 
line). We have added trendlines to emphasize the average slope across the full period (blue line), 
the slope pre-COVID (green line), and the slope during the COVID-19 pandemic (red line). 
Customer 032 exhibited a prominent shift in its savings slope, with a steepening of the slope 
around March 2020 at the start of the COVID-19 pandemic (i.e., more of a reduction in energy 
usage than we observed prior to the start of the pandemic). This steepening continued from the 
start of the pandemic through the end of the post-period. This plot confirmed that the COVID-19 
pandemic had a significant impact on energy usage.   

Figure 1: Example of COVID-19 Pandemic NRE Detection for Customer 032  

 

We identified some NREs that did not appear to be associated with the COVID-19 pandemic. 
Figure 2 shows an example of model residuals for a different customer (Customer 086). Customer 
086 exhibited a prominent shift in its savings slope, with a sudden flattening of the slope around 
February 2021, well after the start of the COVID-19 pandemic (i.e., less of a reduction in energy 
usage than we observed prior to the NRE). This flattening continued from February 2021 through 
the end of the post-period. This plot confirmed that this non-COVID-19 NRE had a significant 
impact on energy usage. 
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Figure 2: Example of Non-COVID NRE Detection for Customer 086 

 
During this process, we identified  

• 56 gas sites and 144 electric sites with a single significant NRE in the post-period for 
adjustment; and  

• 20 gas sites and 24 electric sites with multiple NREs in the post-period, which were 
excluded from the analysis.8 

For the subset of sites with a single NRE, we used a second regression model to estimate the 
impact of the NRE (whether or not it was related to the COVID-19 pandemic) on the energy usage 
of each site as shown in Equation 1. The purpose of this model is to estimate the incremental 
impact of NREs on the residuals in the post-period (i.e., the estimated change in energy usage 
after the program implementation). The interaction term captures any increase or decrease in the 
impact of the NREs over time. The statistical significance of the NRE coefficients tells us whether 
an NRE adjustment is necessary, and the value of the coefficients is our best estimate for the 

 

8 These sites were shown in the last line of Table 4: Participant Attrition from Billing Analysis by Exclusion Criteria, 
Phase 2. 
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impact of the NRE. This adjustment model was estimated separately for each participant and each 
hour of the day.  

Equation 1: Non-Routine Adjustment Ordinary Least Squares (OLS) Regression Model 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙!,# = 𝛽$ + 𝛽%!𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝!,# + 𝛽&!𝑁𝑅𝐸# + 𝛽%&!𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∗ 𝑁𝑅𝐸!,# + 𝜀!,# 

Where:  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙!,#	= Difference between the model prediction and actual energy usage, for 

customer i during time interval t during the post-period 
𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝	= Post-period time interval t 

𝑁𝑅𝐸	= Dummy variable (0, 1) representing the period during the NRE 
𝛽&!= Average impact of the NRE on the energy usage of customer i 
𝛽%&!= Average incremental impact of the NRE on the energy usage of customer I for 

each additional time interval t 
	𝛽$! 	, 𝛽'! …= Coefficients estimated by the model for customer i 

𝜀	= Random error assumed to be normally distributed 

We adjusted for the impact of one of six different types of NREs at each site where we found a 
statistically significant change in the model residuals for a single NRE. Table 5 shows each of the 

six types of NREs for which we adjusted, the number of sites affected, the percentage of the 
period that was affected, and the impact on estimated savings for kWh.  

Table 6 shows the same information for gas savings. The second line shows that we identified and 
adjusted for temporary NREs, events that resolved on their own within the period, at 52 sites. 
These NREs spanned 34 percent of the period on average, or around 4 months for a site with a full 
12-month baseline period. Before adjusting for this NRE, we started with a savings estimate of 9.3 
percent, but this increased to 14.2 percent when we adjusted for the NRE. This happens when an 
NRE makes the baseline energy usage artificially high; once you correct for that temporary change 
in baseline usage during the event, you see a wider gap between baseline and post-period usage 
(greater savings). NREs can work in either direction, increasing or decreasing the estimated 
savings. Overall, our adjustments for COVID-19 NREs tended to decrease estimated savings while 
adjustments for non-COVID-19 NREs tended to increase savings (as shown with Customer 086 in 
Figure 2). While COVID-19 was an expected source of NREs (n=56 electric sites and n=13 gas sites), 
NREs of unknown cause (n=88 electric sites and n=43 gas sites) were the most common. 
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Table 5: Impact of Electric NRE Adjustments on Estimated Savings (kWh) 

Cause Duration Period Sites 
% of Post 

During/After NRE 

Original 
Savings as % 
of Baseline 

Adjusted 
Savings as % of 

Baseline 

N/A N/A (no NRE) N/A 38 N/A 12.5% 12.5% 

Unknown 
Temporary Either 52 34% 9.3% 14.2% 

Lasting Either 36 32% 7.2% 9.9% 

COVID-19 

Temporary 
Baseline 34 38% 14.1% 23.8% 

Post 14 52% 36.3% 13.3% 

Lasting 
Baseline 5 61% 9.4% 18.3% 

Post 3 74% 30.9% -3.2% 

 
Table 6: Impact of Gas NRE Adjustments on Estimated Savings (therms) 

Cause Duration Period Sites 
% of Post 

During/After NRE 

Original 
Savings as % 
of Baseline 

Adjusted 
Savings as % of 

Baseline 

N/A N/A (no NRE) N/A 97 N/A 8.7% 8.7% 

Unknown 
Temporary Either 16 26% -3.0% 8.7% 

Lasting Either 27 11% 15.1% 29.5% 

COVID-19 

Temporary 
Baseline 6 45% 8.3% 25.5% 

Post 3 41% 40.6% 19.1% 

Lasting 
Baseline 3 55% -20.8% -91.9% 

Post 1 79% 54.6% 9.3% 

 

3.3 Billing Analysis 
We used the AMI Customer Segmentation (AMICS) modeling approach to estimate pilot impacts 
on both electric and gas energy usage. The AMICS approach estimates a separate usage profile for 
each service account (i.e., distinct customer and premise) or customer segment by season and day 
type while controlling for weather conditions and other differences across days (e.g., day-of-week, 
hours of daylight). We also used the AMICS modeling approach to estimate electric load shapes.   

The AMICS approach uses segmentation to produce a portfolio of load shapes and then compares 
each day in the post-period against similar days in the baseline, as shown in Figure 3. A key benefit 
of the AMICS model is avoiding over-reliance on ‘average day’ conditions.  
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Figure 3: AMICS Modeling Approach 

 

Each day of the study period is binned in terms of its weather, day type, and season.9 Segmenting 
days by attributes such as their cooling degree-days (CDDs) explicitly incorporates these elements 
into our model, controlling for differences in energy usage across days. Each customer is assigned 
to a single bin (for a site-specific model), but because weather and day type change throughout 
the year, each customer has days that are assigned to many different bins. 

Once the data are segmented, the AMICS model estimates an ordinary least squares (OLS) 
regression model for each customer and each day bin (weather and day type combination) that 
has a single dummy variable for each hour of the day as shown below: 

Equation 2: Segmented OLS Regression Model 
𝑈𝑠𝑎𝑔𝑒!,# = 𝛽($,!𝐻00!,# + 𝛽(',!𝐻01!,# + 𝛽(),!𝐻02!,# +⋯+ 𝛽()*,!𝐻23!,#𝜀!,# 

Where:  
𝑈𝑠𝑎𝑔𝑒!,#	= Energy consumption for a customer i during time interval t  

𝐻00,𝐻01,…	= Array of indicator variables (0,1) representing the hour of the day 
𝛽($,! 	, 𝛽(',! …= Coefficients estimated by the model for customers i 

𝜀	= Random error assumed to be normally distributed 

Most other methods provide one annualized savings number across all participants. The regression 
modeling approach employed by the AMICS model estimates a full unique set of slope coefficient 

 

9 The weather bins are created by calculating cooling degree-hours (CDH) for each hourly observation using a base 
temperature of 65 degrees Fahrenheit, and then taking the average of these hourly values to create a single cooling 
degree-day (CDD) value for each customer on each day (i.e., each “customer-day”) in the study period. This process is 
repeated to assign these same days to heating degree-day (HDD) bins. 
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estimates for each customer segment for each day bin (weather and day type).10 When applied to 
an entire program, the AMICS model provides separate load shapes (and thus separate savings 
estimates) for each customer segment, which makes it a useful tool for targeting. Binning the data 
and then estimating separate regression models for each bin enables the overall model to control 
for a greater amount of the variation across both customers and weather conditions. This is not a 
proprietary “black box” method, but rather a series of simple linear regressions that are estimated 
with open-source statistical software (R and PostgreSQL).11  

These site-level models use the AMICS approach to explain the change in energy usage at each of 
the participant sites by time of day. We tested hundreds of model specifications that included 
wide-ranging controls for: 

• Cooling degree-days (CDDs), with a base temperature of 65 degrees Fahrenheit; 
• Heating degree-days (HDDs), with a base temperature of 65 degrees Fahrenheit; 
• Hours of daylight, measured from dusk to dawn; 
• Season (based on calendar season); and 
• Day type (i.e., separating weekdays from weekends). 

Additionally, we also tested a model variation for which pre-period data were restricted to one 
year prior to installation. We tested a variety of models, selecting from the controls listed above. 
For each site and fuel type, we selected the model that most accurately predicted pre-period 
energy usage as determined by the R-square, among models with coefficient of variation of the 
root mean square error [CV(RMSE)] less than 25 percent—while also ensuring at least 90 percent 
coverage of days in the reporting period.  

The load shape estimates produced by the AMICS modeling approach provide hourly kWh energy 
usage; the segmentation enables us to calculate annualized, seasonal, and even winter weekday 

 

10 Application of the AMICS model to evaluate a large program often results in thousands of distinct sets of regression 
coefficients. However, this process is relatively fast and straightforward, as Evergreen has developed a custom R 
software package to automate each AMICS query and OLS regression from an integrated SQL database. 
11 The AMICS approach was extensively tested on residential HVAC programs in Phase I of the AMI Billing Regression 
Study. The Phase II study expanded this research to include a variety of commercial programs. The relative accuracy of 
AMICS estimates for both site- and segment-level models (as proposed in this analysis) were demonstrated in the 
2019 NMEC Pre-Qualification Pilot Feasibility Study, conducted by Evergreen Economics under the supervision and 
guidance of the Emerging Products team at Southern California Edison (SCE).  

We conducted a separate analysis of site level commercial HVAC savings for SCE in 2018 to demonstrate that the 
AMICS approach can be applied to individual commercial buildings and not just groups of program participants. This 
study included a side-by-side comparison and cross validation exercise that found no significant difference in 
prediction error between AMICS and the Temperature and Time of Week (TTOW) modeling approach developed by 
the Lawrence Berkeley National Laboratory (LBNL). Both AMICS and TTOW struggled with the same sites and the same 
days; switching from AMICS to TTOW is unlikely to have any impact on site attrition.   
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on-peak hourly load predictions and corresponding savings estimates. AMICS was also used to 
provide daily gas energy usage for annualized and seasonal gas savings. We present the savings 
estimates for individual customer segments (including thermostat, building, and customer 
characteristics) to identify scenarios with higher and lower than average energy savings.  

3.3.1 Baseline Model Fit 
We assessed the baseline model fit with a series of goodness-of-fit metrics: 

• Normalized mean bias error (NMBE); 

• Coefficient of variation of the root mean square error, CV(RMSE); 

• Fractional savings uncertainty (FSU) (bias corrected); and 

• Coefficient of determination, R-square.12 

Figure 4 provides a visualization of these four error metrics across the 307 sites with thermostats 
qualified for Energy Trust incentives and sufficient billing data for the analysis (before NRE 
exclusions), while Figure 5 shows the 196 gas sites with sufficient data. Sites that fell outside the 
blue shaded area were considered too weak to provide reliable savings estimates. A high FSU 
means that it will be difficult for these models to reliably detect savings in the same magnitude as 
the ex-ante savings. However, if the savings estimate exceeds ex-ante (e.g., the customer saved 
more than expected), we would still see a statistically significant change in energy usage. We did 
not set an FSU threshold for this program because we were consistently seeing savings estimates 
in excess of ex-ante. Sites that fell in the blue shaded areas had extremely variable energy usage in 
the baseline that could not be sufficiently explained by outdoor air temperature and seasonality 
(n=101 for electric and n=23 for gas).13  

 

12 Low R-square values suggest that additional independent variables should be tested. If no additional variables are 
feasible (due to limitations in the data), then a low R-square value is acceptable. 
13 These sites were shown in the second to last line of Table 4. 
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Figure 4: Electric Baseline Model Fit 

 

Figure 5: Gas Baseline Model Fit 
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We reviewed the characteristics of sites that were dropped due to poor model fit, looking for any 
patterns that may have impacted the analysis findings. While thermostat type had no direct 
impact on attrition, our comparison of the brands could feasibly be affected if there is greater 
attrition in one than the other. Of the 101 electric sites that were dropped, 99 had Ecobee 
thermostats installed (98%). This is slightly higher than the proportion we have retained in the 
sample for electric analysis, which includes 173 sites with Ecobee smart thermostats (95%) and 9 
with Pelican smart thermostats (5%).  However, the thermostat brand is related to other factors, 
such as business type, where smaller businesses like small office (n=41 dropped sites), small retail 
(n=14 dropped sites), and non-hotel hospitality (n=10 dropped sites) are often installing the 
Ecobee.  

While a somewhat disproportionate number of Pelican smart thermostats were dropped from the 
gas analysis (29% of Pelican sites versus 11% of Ecobee sites) again, this is correlated with other 
factors, namely HVAC heating capacity; seven of the 23 dropped sites had either very large 
systems (greater than 800,000 BTU) or no data on heating system size.  

3.3.2 Computing Standard Errors 
In the AMICS approach, we estimate individual regression models for thousands of customer-day 
segments, providing a kWh energy usage prediction for each hour.  

Because the AMICS model is estimated using data from the baseline year (12 months prior to 
thermostat installation), we compute the relative variance for each hour of the day for each 
customer-day bin as the ratio of the variance to predicted hourly kWh usage. These relative 
variances are then applied to the post-period data to create confidence intervals for the model 
predictions of each hour of each customer-day in the post-period. With 24 hours per day and 
thousands of customer-day segments, we compute over 24,000 confidence intervals. For 
aggregated predictions, such as the annual and seasonal post-period load shapes, we use 
bootstrapping to estimate the relative variance for each hour, accounting for variation in the 
number of observations and relative kWh represented by each customer-day bin.  

A bootstrap draws a series of random samples with replacement from the empirical distribution of 
values and then selects the 2.5 and 97.5 values (𝛼/2 and 1-𝛼/2) as the lower and upper values of 
the 95 percent confidence interval (1-𝛼). In situations in which the empirical distribution of data is 
skewed and bounded (cannot fall below zero), bootstrap confidence intervals have been shown to 
be asymptotically more accurate than standard percentile-based methods, while retaining the 
desirable property of robustness. This approach adjusts for both bias and skewness in the 
distribution by estimating the density from the observed data, rather than assuming the data 
conform to a known parametric distribution. We are therefore confident that the confidence 
intervals we developed using the bootstrap method are at least as good (if not superior) in 
performance to standard percentiles. Specifically, we used the bootstrap method developed by 
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Bradley Efron.14  
 
As with any confidence interval estimated from a small sample size, there is a potential for 
overstating confidence (i.e., estimating unrealistically tight error bounds) when the sample 
measurements are very similar by random chance. Larger samples improve the accuracy of both 
the load shape estimates and error bounds—the confidence intervals will not necessarily get 
tighter, but they will provide a more realistic estimate of the true variability across sites.  

3.3.3 Energy Savings Estimation 
Energy savings are estimated by comparing the model predictions for each customer and day bin 
to their actual energy usage on all similar days in that bin after the thermostat installations, as 
shown in Equation 3. We are comparing energy usage in the post-period to what the same 
customer used in the baseline period.  

Equation 3: Energy Savings 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠!,# = 𝑃𝑟𝑒𝑑𝚤𝑐𝑡𝑒𝑑+,#H −𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑜𝑠𝑡!,# 

Where:  

𝑃𝑟𝑒𝑑𝚤𝑐𝑡𝑒𝑑+,#H 	= Energy consumption predicted for customer i for days in bin t 
𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑜𝑠𝑡!,#	= Actual energy consumption for customer i on days in bin t 

The predictions are based on the estimated regression coefficients. Depending on the analysis, we 
can aggregate the predictions based on normalized weather conditions from the typical 
meteorological year to produce our estimates for normalized electricity usage and savings (kWh or 
therms) by season, as shown in Equation 4. In this example, the normalized summer energy 
consumption of customer i is the sum of three days from day bin “112”, seven days from bin 
“214”, and so on. Each day bin has a set range of CDD, HDD, hours of daylight, and day type based 
on our model specification. We identify the distribution of days in the normalized weather year 
using the same specifications, and calculate the number expected from each day bin. The 
predicted energy consumption for each day bin comes from the hourly coefficients estimated by 
the model for customer i from days in the baseline period with the same CDD, HDD, hours of 
daylight, and day type. Every energy consumption estimate for the post-period is based on similar 
days in the baseline. We perform a similar aggregation of actual post-period energy usage. 

  

 

14 Efron, B. 1987. “Better bootstrap confidence intervals.” Journal of the American Statistical Association, 82, 171-185. 
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Equation 4: Example Calculations of Predicted Summer Energy Consumption and Savings 

𝑆𝑢𝑚𝑚𝑒𝑟+H = 3 ∗ L𝛽M($,!,'') + 𝛽M(',!,'') + 𝛽M(),!,'') +⋯+ 𝛽M()*,!,'')N + 7
∗ L𝛽M($,!,)', + 𝛽M(',!,)', + 𝛽M(),!,)', +⋯+ 𝛽M()*,!,)',N + ⋯ 

𝐴𝑐𝑡𝑢𝑎𝑙! = 3 ∗ 𝑘𝑊ℎ!,'') + 7 ∗ 𝑘𝑊ℎ!,)', +⋯ 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠! = 𝑆𝑢𝑚𝑚𝑒𝑟+H −𝐴𝑐𝑡𝑢𝑎𝑙𝑆𝑢𝑚𝑚𝑒𝑟!  

Where:  

𝑆𝑢𝑚𝑚𝑒𝑟+H 	= Predicted energy consumption for customer i during the summer of a 
normalized weather year (TMY3) 

𝛽M($,! 	, 𝛽M(',! …= Coefficients estimated by the model for customer i 
𝐴𝑐𝑡𝑢𝑎𝑙𝑆𝑢𝑚𝑚𝑒𝑟! 	= Actual energy consumption of customer I, adjusted to reflect the summer of a 

normalized weather year (TMY3) 
𝑘𝑊ℎ!,'')	= Average actual energy consumption of customer i in the post-period for 

individual days in bin 112 (a set combination of CDD, HDD, hours of daylight, 
and day type)  

3.3.4 Demand Savings Estimation 
For this analysis, we defined utility peak hours based on PGE’s time-of-use (TOU) rates, as shown 
in Figure 6.  
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Figure 6: PGE Peak Period Definitions 

 
Image Source: Portland General Electric, Time of Use Pricing: For Schedule 32 businesses and organizations 

For the peak demand (kW) estimate, we compared the load shapes estimated by the model for the 
hottest summer days (peak cooling) and coldest winter days (peak heating) to the actual energy 
usage of these buildings in the post-period, after the smart thermostats were installed. The model 
provides our best estimate for how each building would have used energy during utility peak hours 
on extreme weather days (e.g., day bin 911) if the smart thermostats had never been installed, as 
shown in Equation 5. We compare this prediction to the actual energy usage (kWh) during the 
utility peak hours on this extreme weather day as an approximation of the peak demand savings 
(kW). 

Equation 5: Example Calculations of Predicted Summer Peak Energy Consumption and Savings 

𝑃𝑒𝑎𝑘+H = L𝛽M('-,!,.'' + 𝛽M('/,!,.'' + 𝛽M('0,!,.'' + 𝛽M('1,!,.'' + 𝛽M('.,!,.'' + 𝛽M()$,!,.''N/8 

𝐴𝑐𝑡𝑢𝑎𝑙! = (𝑘𝑊ℎ('-,! + 𝑘𝑊ℎ('/,! + 𝑘𝑊ℎ('0,! + 𝑘𝑊ℎ('1,! + 𝑘𝑊ℎ('.,! + 𝑘𝑊ℎ()$,!)/8 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠! = 𝑃𝑒𝑎𝑘+H −𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑒𝑎𝑘!  
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Where:  

𝑃𝑒𝑎𝑘+H 	= Predicted energy consumption for customer i during the utility peak hours on 
the hottest days of the summer of a normalized weather year (TMY3) 

𝛽M('-,! 	, 𝛽M('/,! …= Coefficients estimated by the model for customer i for hours 15, 16, … 
𝐴𝑐𝑡𝑢𝑎𝑙𝑆𝑢𝑚𝑚𝑒𝑟! 	= Actual energy consumption of customer i, adjusted to reflect the summer of a 

normalized weather year (TMY3) 
𝑘𝑊ℎ.'',! 	= Average actual energy consumption of customer i in the post-period for 

individual days in bin 911 (weekdays with the highest CDD, lowest HDD, and set 
hours of daylight)  

3.4 Acknowledgement of Limitations  
Our billing analysis was limited by several factors. First, our requirement of at least nine months of 
post-period data restricted the number of available sites. While this requirement was critical to 
ensure that we had sufficient observations of the peak heating and peak cooling periods at every 
site, this requirement still restricted the number of sites in our analysis.  

A second limitation of this analysis stems from the various analysis-related impacts of the COVID-
19 pandemic. One such impact was a delay in installation, which contributed to a limited number 
of sites having sufficient post-period data. Another impact was on the energy usage data of the 
sites with sufficient post-period data. At sites where the pandemic has led to non-routine energy 
usage, we have attempted to correct for this impact with NRE adjustments. While these 
adjustments should lead to more robust analysis, they also introduce uncertainty and may not 
fully account for the impacts of the NRE.    

3.4.1 Impact of the COVID-19 Pandemic on Savings Estimates 
This section gives additional detail on how the COVID-19 pandemic has impacted participant 
energy usage and the extent to which we were able to adjust for this impact in our estimates of 
energy savings attributable to the smart thermostats. 

Among the many impacts of the COVID-19 pandemic has been a disruption of energy efficiency 
programs and their evaluation. This pilot was no exception, where:  

1. Smart thermostat installations were put on hold in March 2020; and  
2. Existing commercial energy usage patterns changed, ranging from immediate business 

closures with gradual reopening to more modest changes in energy usage resulting from 
new public health mandates (e.g., increased ventilation, reduced occupancy).  

The pandemic is responsible for some of the original 588 sites being removed from this analysis 
because of its impact on the baseline model fit and/or its inconsistent impact on energy usage 
during the post-period (with more than one significant NRE). Despite these limitations, we 
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identified 182 electric sites and 153 gas sites with qualified thermostats and sufficient data that 
could support billing analysis. Of these, 11 electric (6% of the electric sample) and 9 gas (4%) sites 
had extensive energy usage data prior to the start of the COVID-19 pandemic, creating an 
opportunity for us to compare the program impacts for these sites before the pandemic versus 
during the pandemic.  

This analysis demonstrates that even before the start of the pandemic, these smart thermostat 
devices led to statistically significant reductions in energy usage similar to what was expected (per 
the ex-ante savings listed in the measure approval document). Table 7 (kWh) and Table 8 (therms) 
summarize the per-thermostat savings estimates on a daily level with 95 percent confidence 
intervals from October to March for the 11 electric sites and 9 gas sites with sufficient data. The 
‘Actual Energy Usage’ column shows the average daily energy usage per thermostat across each 
time period, prior to and during the COVID-19 pandemic. The ‘Adjusted Prediction’ column 
represents the expected average daily energy usage after applying our adjustments for NREs. The 
values in this table are weighted to represent only the observed weather of the period prior to 
the start of the COVID-19 pandemic (10/09/2019 to 03/14/2020) for the 11 electric sites and 9 gas 
sites in order to create an apples-to-apples comparison. In other words, both of these estimates 
reflect the same sites, the same weather conditions, and the same seasonal energy consumption 
seen during winter and shoulder months from mid-October to mid-March. The only remaining 
difference should be the COVID-19 pandemic.  

Our analysis of the timeframe prior to the start of the COVID-19 pandemic confirms that savings 
from qualified smart thermostats were both large and statistically significant. The devices are 
clearly saving energy. The ex-ante savings estimate for the 11 electric sites is 7.70 kWh per day, 
which is similar to our estimated daily energy savings of 7.61 kWh per day prior to the start of the 
COVID-19 pandemic. Similarly, gas savings were significant prior to the start of the pandemic, 
although considerably lower than the ex-ante savings value of 10.0 therms per day at gas sites 
with sufficient pre-pandemic data.15 While this is not a perfect comparison, this heuristic 
demonstrates the existence of non-zero energy savings that align with the ex-ante savings, prior 
to the introduction of additional uncertainty from the COVID-19 pandemic and non-routine 
adjustments. 

The estimates for savings during year 1 of the COVID-19 pandemic are higher, though not 
statistically significantly different. While the sample is limited to only 11 electric and 9 gas sites, 
this analysis suggests that the first year of the pandemic may have inflated savings estimates 
(from 7.55 kWh to 12.75 kWh; and from 0.42 therms to 0.80 therms) despite our efforts to adjust 
for the impact of the COVID-19 pandemic. Fortunately, this incremental impact diminishes over 

 

15 This daily savings estimate has not been adjusted to represent the same weather conditions observed prior to the 
COVID-19 pandemic (October 2019-March 2020). This is a simplified comparison using the best available estimate 
from the measure approval document, annualized ex-ante savings.  
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time as electric savings during year two of the COVID-19 pandemic dropped closer to the pre-
COVID values (and gas savings became insignificant at these sites).  

Table 7: Summary of Per-Thermostat Daily Electric Savings Impact for  
Selected Sites by Time Period (kWh) 

Time Period 
# of 
Sites 

# of T-
stats 

Adjusted 
Prediction  

Actual 
Energy 
Usage  

Daily kWh 
Savings  

% Savings 
Estimate 

Prior to COVID-19 pandemic 
(Oct 2019 - Mar 2020) 11 22 85.66 78.11 7.55 ± 3.3 8.8% ± 3.9% 

During COVID-19 pandemic 
Year 1 (Mar 2020 - Feb 2021) 

11 22 85.66 72.90 
12.75 ± 

3.26 14.9% ± 3.8% 

During COVID-19 pandemic 
Year 2 (Mar 2021- Feb 2022) 

11 22 84.95 75.05 9.9 ± 3.72 11.7% ± 4.4% 

 

Table 8: Summary of Per-Thermostat Daily Gas Savings Impact for  
Selected Sites by Time Period (therms) 

Time Period 
# of 
Sites 

# of T-
stats 

Adjusted 
Prediction  

Actual 
Energy 
Usage  

Daily Therm 
Savings  

% Savings 
Estimate 

Prior to COVID-19 pandemic 
(Oct 2019 - Mar 2020) 9 22 5.14 4.71 0.42 ± 0.26 8.2% ± 5.1% 

During COVID-19 pandemic 
Year 1 (Mar 2020 - Feb 2021) 

9 22 5.14 4.36 0.78 ± 0.50 15.2% ± 9.6% 

During COVID-19 pandemic 
Year 2 (Mar 2021- Feb 2022) 

9 22 5.47 5.37 0.10 ± 0.38 1.8% ± 6.9% 

 

To further highlight this point, we have selected two sites that clearly demonstrate two common 
scenarios observed in this study. The first example demonstrates that the COVID-19 pandemic did 
not cause the high energy savings estimates that we are seeing at many sites in our analysis, while 
the second demonstrates the complexity of isolating the impact of the smart thermostat 
installations at sites that were impacted by the COVID-19 pandemic.  

Figure 6 shows the daily electric energy usage at Site A one year before and one year after the 
thermostat installations (dotted line). The solid vertical line marks the start of the COVID-19 
pandemic. Site A is a non-grocery business with gas heat and cooling that installed five 
thermostats. As shown in the figure, the start of the COVID-19 pandemic is associated with little to 
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no change in energy usage at this site, with similar levels of energy usage to the right and left of 
the solid line. This is contrasted with the energy usage observed after the thermostat installations 
(dotted line), where we suddenly see many days with energy usage below 100 kWh instead of 
around 200 kWh or above.  

After normalizing for weather conditions with the regression model, we estimated savings of 
nearly 44,000 kWh per thermostat per year (38%) across the five installed thermostats, far above 
the ex-ante savings value of 1,275 kWh for this site. This site demonstrates that savings in excess 
of ex-ante were observed at sites where there was little to no COVID-19 impact. Hence, our 
higher-than-expected savings estimates are not necessarily evidence that the COVID-19 
adjustment is incomplete.    

Figure 6: Raw Daily Electric Energy Usage at Site A 

 

Figure 7 shows the raw daily energy usage at Site B one year before and one year after program 
participation. As with the previous figure, the dotted line shows the thermostat installations, and 
the solid vertical line indicates the start of the COVID-19 pandemic. Site B is a non-
grocery business with gas heat and cooling with two thermostats installed. As opposed to Site A, 
electricity usage appears to decrease dramatically from around 75 kWh to around 25 kWh per day 
at the start of the pandemic (solid line). The weeks before and after the installation of the 
thermostats (dotted line) appear similar, at around 10 kWh per day. Shortly after, however, energy 
usage increases, returning to a more typical level for this site at around 50 kWh, though this is still 

Start of 
Pandemic 
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much lower than the pre-pandemic baseline. One possible explanation for this pattern is that 
many businesses closed temporarily early in the COVID-19 pandemic when the first shelter-in-
place orders were issued. The thermostats were installed during this period of low energy usage, 
which we presume is related to the COVID-19 pandemic. In August 2020, their energy usage ticks 
back up; this is a few months after the end of the shelter-in-place orders when the economy was 
gradually reopening. The big question at this site is why did energy usage not return to prior levels 
of around 75 kWh? Was this due to the smart thermostats, the continued impact of the COVID-19 
pandemic, or both?  

Our NRE detection method is capable of identifying the period from March 2020 to September 
2020 as an NRE in need of adjustment at this site. Unfortunately, the installations occurred during 
this NRE. With such a short time before and after the installation during an event, we are unable 
to claim sufficient certainty in our estimates of the incremental impact of the thermostats on 
energy usage. 

While we have corrected for this primary NRE, there exists the possibility that the COVID-19 
pandemic continues to impact energy usage after the end of this event (March-September 2020) 
as the customer’s energy usage increased substantially but did not fully return to levels observed 
prior to the start of the pandemic. This is reasonable for office buildings, as many have still not 
returned to pre-pandemic levels of occupancy, with more people choosing to work from home.   

For Site B, our model estimated savings of nearly 5,000 kWh per thermostat per year (21%) across 
the two thermostats at this site—again, well above the ex-ante savings value of 510 kWh for this 
site. In this example, the COVID-19 pandemic may be inflating or deflating our savings estimate. 
This site clearly demonstrates the complexity of isolating the impact of the smart thermostat 
installations at sites impacted by the COVID-19 pandemic. 
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Figure 7: Raw Daily Energy Usage as Site B 

 

We attempted to adjust for the impact of the COVID-19 pandemic and subsequent NREs at all sites 
where it was required, but there is still a possibility that the savings estimates have been 
influenced by these events. This is primarily the result of variable impacts that the pandemic had 
on energy usage over time. For example, consider a scenario where a business closed during the 
initial shelter-in-place orders. It reopened two months later, increasing ventilation (per CDC 
guidelines), shortening operating hours, and increasing the time spent disinfecting surfaces 
between shifts. The temporary closure would have a large and statistically significant impact on 
energy usage (seen as a sudden increase in residuals that spans two months) that our NRE 
detection procedure would identify and then adjust for. There are three possibilities for the 
reopening phase: 

1. Reopening is statistically significantly different from the baseline and seen as a 
continuation of the closure, where COVID has a sudden negative impact on energy usage 
(intercept) that gradually lessons over time (slope).  

2. Reopening is statistically significantly different from the baseline and seen as an entirely 
separate NRE; this site would be dropped for having multiple NREs (and therefore too 
much uncertainty). 

3. Reopening is not statistically significantly different from the baseline; no adjustment is 
made. Though there may have been changes at the site, they are not large enough to 
trigger a non-routine adjustment applied, despite its causal relation to the pandemic. In 

Start of 
Pandemic 
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this situation and for others like it in this analysis, most of the impact of the COVID-19 
pandemic has been corrected, but some lingering impacts may remain embedded in the 
savings estimate. The challenge we are facing is that there is no way to know for sure 
what caused energy usage to change from the billing data alone. Without additional 
information, we are not able to tease out gradual changes caused by the COVID-19 
pandemic from gradual changes in thermostat operation.  

Our analysis of the savings from 11 electric and 9 gas sites with thermostats installed before and 
during the pandemic confirmed that savings appear higher during the COVID-19 pandemic, but the 
difference was not statistically significant.  

Savings estimates presented in the following sections should be interpreted with caution due to 
the lingering uncertainty in the COVID-19 adjustment, with the caveat that savings may still be 
inflated but should slowly be approaching the long-term savings as businesses settle into a new 
normal.  
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4 Findings 

 
This chapter provides findings from our analysis of participant billing data. 

4.1 Overall Smart Thermostat Impacts 
Our first section of results focuses on the broad savings impacts of the thermostat pilot based on 
the billing analysis.  

4.1.1 Energy Savings 
First, we present savings aggregated across all sites included in the billing analysis (n=182 electric 
sites) in the form of a load shape. Figure 8 shows the predicted post-period load shape (red) with 
the actual post-period load shape (blue) for the average site on the average day during the year. 
This prediction is based on the pre-period model and post-period weather data; it represents the 
expected load shape for these customers in the absence of the smart thermostat, after adjusting 
our predictions to account for non-routine events (NREs) (including the COVID-19 pandemic). The 
error around each hourly prediction is depicted as a 95 percent confidence interval in the shaded 
area around each estimate. Whenever the actual post-period load shape (blue line) falls outside 
the predicted post-period load region (red area), this indicates that a statistically significant 
change was observed during that hour. While later results are presented at the thermostat level, 
load shape analysis including Figure 8 are at the site level to maintain consistency with the 
underlying data. The Advanced Metering Infrastructure Customer Segmentation (AMICS) model 
found statistically significant reductions in the whole-building energy usage for pilot participants 
across all hours of the day. Overall, participants reduced their pre-period energy usage by an 
average of 15.6 percent by installing one or more smart thermostats.  
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Figure 8: Hourly Load Impacts of Smart Thermostats on the Average Site (a single site on the 
average day across a full year) 

 
The site-level impacts are caused by one or more smart thermostats. Table 9 compares the ex-ante 
kWh savings from the measure approval document with our estimated, NRE-adjusted savings. 
NRE-adjusted savings account for most of the impacts of the COVID-19 pandemic, but some 
lingering impacts may remain embedded in these estimates. These results have been normalized 
to a typical weather year (TMY3) and represent savings per-thermostat and include a 95 percent 
confidence interval. A total of 410 thermostats were installed at the 182 sites included in this 
analysis. For all but nine of these sites, the measure type was consistent across all thermostats at 
the site, allowing us to directly compare estimated per-thermostat kWh savings with ex-ante 
values. At these nine sites, multiple types of measures were installed. Results for these sites have 
been omitted as they are not representative of any individual measure. In general, our annual kWh 
savings estimates greatly exceeded the ex-ante savings values. It is also worth noting that the 
majority of the sites included in our analysis of electric savings are gas heated.     
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Table 9: Annual Normalized Ex-Ante and Ex-Post Savings Estimates for kWh (TMY3 Adjusted) 

Measure Type 
# of 
Sites 

# of 
T-

stats 

Ex-Ante 
Savings per T-

stat  
(Annual kWh) 

Ex-Post Savings  
per T-stat 

(Annual kWh) 

Non-Grocery - Resistance Heat 
w/ Cooling (HZ1) - Smart 
Thermostat 

9 10 940 1,239.0 ± 2,171.4 

Non-Grocery - Heat Pump w/ 
Cooling (HZ1) - Smart Thermostat 19 33 580 4,856.6 ± 1,565.6 

Non-Grocery - Gas Heat w/ 
Cooling (HZ1) - Smart Thermostat 144 315 255 3,429.3 ± 2,356.0 

Grocery - Gas Heat w/ Cooling 
(HZ1) - Smart Thermostat 

1 5 * * 

Multiple Measures 9 47 * * 

Note: While most of the impact of the COVID-19 pandemic has been accounted for with NRE adjustments, some 
lingering impacts may still inflate these savings estimates.  
*We omitted customer groups with fewer than five customers, as the sample is likely too small to draw meaningful 
conclusions from. Results for multiple measures have been omitted as they are not representative of any individual 
measure.  

Similarly, Table 10 compares ex-ante gas savings by measure with the AMICS-estimated, NRE-
adjusted savings calculated in this analysis. These results have been normalized to a typical 
weather year (TMY3) and represent per-thermostat values with a 95 percent confidence interval. 
A total of 318 thermostats were installed at the 153 sites included in this analysis, almost all of 
which are gas heated. For all but five of these sites, the measure type was consistent across all 
thermostats at the site, allowing us to directly compare estimated per-thermostat savings with ex-
ante values. While our annual gas savings estimates generally greatly exceeded the ex-ante savings 
values, in most cases they were not statistically significant. 
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Table 10: Annual Normalized Ex-Ante and Ex-Post Savings Estimates for Gas (TMY3 Adjusted) 

Measure Type # of Sites 
# of T-
stats 

Ex-Ante Savings 
per T-stat  

(Annual Therms) 

Ex-Post Savings  
per T-stat 

(Annual Therms) 

Non-Grocery - Resistance Heat 
w/ Cooling (HZ1) - Smart 
Thermostat 

1 1 * * 

Non-Grocery - Heat Pump w/ 
Cooling (HZ1) - Smart 
Thermostat 

3 3 * * 

Non-Grocery - Gas Heat w/ 
Cooling (HZ1) - Smart 
Thermostat 

144 285 31.0 154.8 ± 236.1 

Multiple Measures 5 29   

* We omitted customer groups with fewer than five customers, as the sample is likely too small to draw meaningful 
conclusions from. 

4.1.2 Demand Savings 
We also analyzed savings on the basis of various day types including the hottest and coldest days 
of the year. Figure 9 shows the post-period predicted load shape (red) with the actual post-period 
load shape (blue) for analysis sites on the hottest days of the year at each site (with CDDs between 
7 and 19 corresponding to average daily temperatures between 72°F and 84°F with daily highs up 
to 98°F). This prediction is based on the pre-period model and post-period weather data; it 
represents the expected load shape for these customers in absence of program pilot participation 
after adjusting to account for NREs. The error of each hourly prediction is depicted as a 95 percent 
confidence interval in the shaded area around each estimate. Whenever the actual post-period 
load shape (blue line) falls outside the predicted post-period load region (red shaded area), this 
indicates that a statistically significant change was observed during that hour. As the actual post-
period energy usage (blue line) falls below the predicted (red line) during every hour, we can 
conclude that the AMICS model detected statistically significant reductions in the whole-building 
energy usage for pilot participants across all hours on the hottest days of the year. Overall, 
participants saved an average of 26.1 kWh or 14.3 percent on these extreme cooling days. In the 
peak hour of the day (5 p.m.), participants saved an average of 0.56 kW per thermostat or 8.5 
percent, although this estimate is insignificant. 
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Figure 9: Load Shape During Peak Cooling, Hottest Days of the Year  
(an average site on the hottest day) 

 

Figure 9 shows the actual post-period load shape (blue) against our predicted load shape (red) for  
participants on the coldest days of the year at each site (with HDDs between 27 and 34 
corresponding to average daily temperatures between 38°F and 31°F, with daily lows as low as 
24°F). Again, we find statistically significant reductions in the whole-building energy usage for pilot 
participants across all hours of the day on the coldest days of the year. Overall, participants saved 
27.5 kWh or 22 percent on peak heating days. In the peak heating hour of 8 p.m., participants 
saved an average of 0.91 kW or 20.5 percent. 
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Figure 10: Load Shape During Peak Heating, Coldest Days of the Year 

 

Table 11 summarizes the charts above and shows how savings varied on these day types for each 
thermostat installed. “Adjusted Prediction” includes the NRE adjustment (e.g., estimated increase 
in usage associated with the COVID-19 pandemic), while “Original Prediction” does not (i.e., our 
initial prediction for the post-period if the COVID-19 pandemic had never occurred). Peak heating 
represents the peak heating hours (6 a.m. to 10 a.m. and 5 p.m. to 8 p.m.) on the coldest days 
observed at each site. While this varied by site, this includes a range of HDDs between 27 and 34 
(average daily temperatures between 38°F and 31°F, with daily lows as low as 24°F). Peak cooling 
represents the peak cooling hours (3 p.m. to 8 p.m.) on the hottest days at a site. Again, these 
values varied by site but represent a CDD ranging between 7 and 19 (average daily temperatures 
between 72°F and 84°F with daily highs up to 98°F). Days without these extreme temperatures are 
shown in the “All Other Days” row. Savings for all three day types were statistically significant for 
kW, with peak heating days having higher savings in terms of kW (0.87 and 0.62 kW) and as a 
percentage of baseline energy usage (22% and 12%). Savings estimates include a 95 percent 
confidence interval. 
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Table 11: Average Demand Savings per Thermostat on Peak Heating and Cooling Days (kW) 

 Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual kW Savings % Savings 

Peak Heating Day  

182 410 

3.80 3.90 3.04 0.87 ± 0.42 22.2% ± 10.7% 

Peak Cooling Day 5.07 5.14 4.52 0.62 ± 0.50 12.1% ± 9.8% 

All Other Days  3.34 3.44 2.99 0.45 ± 0.35 13.1% ± 10.1% 

 

The demand savings results in Table 11 can be further broken out by the heating fuel used at each 
site. Table 12 shows how the demand savings varied between sites heated with gas and those 
heated with electricity. Sites where multiple measures were installed have been excluded. The 
highest electric savings in both kWh and percentage terms occurred at gas-heated sites during 
peak heating hours. While usage was considerably higher at electrically-heated sites during these 
same hours (4.80 kWh at electrically-heated sites, 3.76 kWh at gas-heated sites), demand savings 
were lower (0.52 kW for electrically-heated sites, 0.94 kW for gas-heated sites). Electric savings 
during peak cooling and all other (non-peak) days were similar between electrically-heated and 
gas-heated sites. Savings estimates include a 95 percent confidence interval. 

Table 12: Average Demand Savings per Thermostat on Peak Heating and Cooling Days by Heating 
Fuel (kW) 

 
 Sites 

T-
stats 

Original 
Prediction 

Adjusted 
Prediction Actual kW Savings % Savings 

Electric 
Heat 

Peak Heating 

28 43 

4.74 4.80 4.28 0.52 ± 0.34 10.8% ± 7.1% 

Peak Cooling 4.93 4.61 3.99 0.62 ± 0.21 13.4% ± 4.5% 

All Other Days 3.78 3.68 3.18 0.50 ± 0.23 13.6% ± 6.1% 

Gas 
Heat 

Peak Heating 

145 320 

3.65 3.76 2.82 0.94 ± 0.42 25.0% ± 11.0% 

Peak Cooling 5.20 5.36 4.75 0.61 ± 0.48 11.3% ± 8.9% 

All Other Days 3.32 3.47 3.03 0.44 ± 0.36 12.7% ± 10.5% 

 

4.2 Impacts by Season and Day Type 
Next, we analyzed program impacts on the basis of season. Figure 11 shows the post-period 
predicted load shape (red) with the actual post-period load shape (blue) for analysis sites during 
each of the four seasons. As the actual load shape (blue line) falls below the predicted load shape 
(red line and shaded area), we see statistically significant reductions in the whole-building energy 
usage for pilot participants across all hours for each season. However, the magnitudes and hours 
of peak savings vary.  
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Figure 11: Average Hourly Savings by Season (for the average site) 

 

Table 13 summarizes Figure 11 and shows how savings varied by season. Results have been 
normalized to represent the full season within a typical weather year (TMY3) and include 95 
percent confidence intervals. “Adjusted Prediction” accounts for NREs, while “Original Prediction” 
does not. Average savings were lowest in the summer both in terms of kWh and as a percentage of 
baseline energy usage, while winter had the highest average savings. Table 14 summarizes the 
similar information, but in terms of therms, for gas savings. Gas savings were largest during the 
winter and insignificant in the other seasons.  
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Table 13: Seasonal Electric Savings, kWh per Thermostat (TMY3 Adjusted) 

Season Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Seasonal kWh Savings 
(kWh per thermostat, 

TMY3 adjusted) % Savings 

Fall 182 410 7,438 7,434 6,501 934 ± 877 12.6% ± 11.8% 

Winter 182 410 7,398 7,397 6,252 1,145 ± 696 15.5% ± 9.4% 

Spring 182 410 6,326 6,994 5,999 995 ± 722 14.2% ± 10.3% 

Summer 182 410 8,431 8,634 7,717 917 ± 860 10.6% ± 10.0% 

 

Table 14: Seasonal Gas Savings, therms per Thermostat (TMY3 Adjusted) 

Season Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Seasonal Therms Savings 
(Therms per thermostat, 

TMY3 adjusted) % Savings 

Fall 152 318 336 313 295 17.4 ± 51.0 5.6% ± 16.3% 

Winter 153 318 595 591 502 89.5 ± 78.6 15.1% ± 13.3% 

Spring 153 318 316 335 300 35.2 ± 67.7 10.5% ± 20.2% 

Summer 153 318 201 193 177 16.7 ± 50.4 8.6% ± 26.0% 

 

Figure 12 shows the post-period predicted load shape (red) with the actual post-period load shape 
(blue) by day type and season, with hours shaded to reflect the time-of-use (TOU) rate that 
applies. The purpose of this analysis is to assess whether the smart thermostat savings occur 
during hours when the utility would prefer to shed load, with the highest priority being a reduction 
in on-peak hours (orange) and the lowest during off-peak hours (purple). There are statistically 
significant reductions in the whole-building energy usage for pilot participants across all hours of 
the day, day types, and seasons, although the magnitude of these savings varies. These smart 
thermostats do offer savings during weekday on-peak hours for both summer and winter, but the 
greatest savings occur off-peak on Sunday afternoons. Smart thermostats provide energy savings 
during peak hours through temperature setbacks in summer months and setups in winter months. 
The off-peak savings will also come from the thermostats reducing HVAC usage when the buildings 
are unoccupied, which occurs more often on weekends and overnight. 
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Figure 12: Electric Savings by TOU Peak Period (for the average site) 

 

Table 15 summarizes Figure 11 and shows savings (with 95% confidence intervals) by TOU time 
period on an average hourly basis. “Adjusted Prediction” accounts for NREs, while “Original 
Prediction” does not. Savings across all of the TOU periods were statistically significant with the 
exception of summer mid-peak. The off-peak periods in both the winter and summer had the most 
variability, with wider confidence intervals. Off-peak savings appear higher than on-peak or mid-
peak savings, though the differences are not statistically significant.16 

 

16 This analysis was not possible for gas because the usage data are in daily intervals.  
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Table 15: Hourly Thermostat Savings by TOU Period (per thermostat) 

TOU 
Phase 

TOU 
Period Sites 

T-
stats 

Original 
Prediction 

Adjusted 
Prediction Actual 

Average kW 
Savings % Savings 

Summer 

Mid-Peak 

182 410 

3.36 3.33 2.94 0.39 ± 0.39 11.7% ± 11.8% 

Off-Peak 2.64 2.64 2.09 0.54 ± 0.48 20.6% ± 18.3% 

On-Peak 3.61 3.48 2.98 0.50 ± 0.41 14.3% ± 11.7% 

Winter 

Mid-Peak 

182 410 

2.95 2.97 2.53 0.44 ± 0.31 14.8% ± 10.4% 

Off-Peak 2.39 2.40 1.85 0.55 ± 0.37 22.9% ± 15.6% 

On-Peak 2.90 2.94 2.51 0.43 ± 0.26 14.6% ± 8.9% 

 

The results in Table 15 can be further broken out by the heating fuel used at each site. Table 16 
shows how the winter TOU results varied between sites heated with gas and those heated with 
electricity. Sites where multiple measures were installed have been excluded. The highest savings 
in both kWh and percentage terms occurred at electrically-heated sites off-peak. However, off-
peak savings are similar in percentage terms between gas- and electrically-heated sites, and on-
peak savings are higher among gas-heated sites in both kWh and percentage terms.  

Table 16: Hourly Thermostat Savings during Winter TOU Period by Heating Fuel (per thermostat) 

Heating 
Fuel 

TOU 
Period Sites 

T-
stats 

Original 
Prediction 

Adjusted 
Prediction Actual 

Average kW 
Savings % Savings 

Electric 

Mid-Peak 

28 43 

3.75 3.64 3.17 0.47 ± 0.32 12.8% ± 8.8% 

Off-Peak 3.24 3.18 2.47 0.71 ± 0.35 22.4% ± 10.9% 

On-Peak 3.83 3.74 3.45 0.29 ± 0.26 7.8% ± 6.8% 

Gas 

Mid-Peak 

145 320 

2.86 2.96 2.52 0.44 ± 0.32 14.8% ± 10.7% 

Off-Peak 2.25 2.33 1.81 0.52 ± 0.39 22.1% ± 16.6% 

On-Peak 2.81 2.90 2.46 0.45 ± 0.28 15.4% ± 9.7% 

 

4.3 Impacts Across Customers 
In addition to analyzing the average smart thermostat impacts, we also analyzed how impacts 
varied across building and thermostat characteristics.  

As a basis for subsequent analysis, we first present savings estimates for the individual sites 
included in this analysis (n=182 electric sites and n=153 gas sites). Figure 13 (kWh) and Figure 14 
(gas) show per-thermostat savings estimates and confidence intervals for each site in this analysis, 
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ordered by the per-thermostat savings observed at the site. These figures highlight the variation in 
savings that we observed at a site level as well as the range of confidence intervals we see in this 
analysis, with wide confidence intervals around many of the highest savings estimates. The savings 
per thermostat were not corelated with the number of thermostats installed. Our subsequent 
analysis aggregates these findings by customer segment to identify characteristics that may be 
driving the variability in savings.  

Figure 13: Annual Electric Savings per Thermostat (kWh) 
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Figure 14: Annual Gas Savings per Thermostat (therms) 

 

4.3.1 Thermostat Characteristics 
We analyzed how estimated savings varied with the two types of qualified smart thermostats 
(Ecobee and Pelican) that were utilized by participants. However, there was considerable variation 
between the businesses that received Pelican smart thermostats and those that received Ecobee 
smart thermostats. First, in terms of building size, Pelican smart thermostats were generally 
installed at much larger sites (with an average total size of 16,533 square feet versus 3,089 square 
feet). Because of this, sites with Pelican thermostats tended to have many more thermostats 
installed at the site (8.6 thermostats per site versus 1.9 thermostats for Ecobee). On average, each 
Pelican thermostat served 2,024 square feet of the site whereas each Ecobee served 1,658 square 
feet. In terms of business type, Pelican thermostats were most common in medium offices and 
were very rarely installed in food service, small office, and small retail offices. In most instances, 
Pelicans were installed in larger, more complex buildings with central economizers.  

Table 17 (kWh) and Table 18 (therms) summarize savings from the billing analysis for each 
thermostat type on an annual, per-thermostat basis. “Adjusted Prediction” accounts for NREs, 
while “Original Prediction” does not. For all sites included in this analysis, only one type of 
thermostat was installed, regardless of the total number of thermostats installed. Also, the 
majority of sites included in this analysis (173 of 182 for electric, 149 of 153 for gas) had Ecobee 
smart thermostats installed. Electric savings were significant for both types of thermostats. 
Baseline usage and kWh savings varied dramatically between the two thermostat types. For gas, 
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savings for Pelican thermostats were large and significant, but were insignificant for Ecobee 
thermostats. Given the limited number of sites with Pelican thermostats (n=9 electric and n=4 
gas), it is difficult to draw broader conclusions about Pelican thermostats from this sample. 

Table 17: Annual Electric Thermostat Savings by Model (kWh) 

Thermostat Sites T-stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Annual kWh 
Savings (per 
thermostat) % Savings 

Ecobee EMS-SI 173 333 30,204 31,248 27,201 4,048 ± 3,003 13.0% ± 9.6% 

Pelican TS-200 9 77 16,681 14,636 11,653 2,983 ± 1,374 20.4% ± 9.4% 

 

Table 18: Annual Gas Thermostat Savings by Model (therms) 

Thermostat Sites T-stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Annual Therms 
Savings (per 
thermostat % Savings 

Ecobee EMS-SI 149 281 1,455 1,439 1,281 158 ± 235 11.0% ± 16.4% 

Pelican TS-200 4* 37 989 1,095 879 216 ± 72 19.7% ± 6.5% 

* Warning: As this sample has fewer than five sites, it is likely too small to draw meaningful conclusions from. 

Based on the audit, we identified two additional explanations for the variation in savings: 1) if a 
schedule existed before installation and 2) if the new schedule was the same as the previous 
schedule. While there was no way to assess if the new schedules were the same as the previous 
schedules (information on existing schedules was not collected during the audit), we do know 
whether a schedule existed before installation for the sites in the billing analysis.  

Table 19 (kwh) and Table 20 (therms) show how the energy savings estimates varied based on 
whether the customer reported having a schedule on their existing system before the smart 
thermostat was installed. This table excludes savings for sites where a schedule before the 
installation was listed as “not applicable” and for sites with multiple thermostats and inconsistent 
existing conditions (i.e., only a portion were scheduled). Savings were higher in terms of kWh for 
sites that did not have an HVAC schedule prior to the smart thermostat being installed. Results 
were insignificant for gas savings. 
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Table 19: Annual Electric Thermostat Savings by Existing Schedule (kWh) 

Existing 
Schedule Sites T-stats 

Original 
Prediction 

Adjusted 
Prediction Actual 

Annual kWh 
Savings (per 
thermostat) % Savings 

Yes 99 217 25,706 27,505 23,934 3,571 ± 3,512 13.0% ± 12.8% 

No 53 78 37,803 37,464 32,763 4,701 ± 2,284 12.5% ± 6.1% 

 

Table 20: Annual Gas Thermostat Savings by Existing Schedule (therms) 

Existing 
Schedule Sites T-stats 

Original 
Prediction 

Adjusted 
Prediction Actual 

Annual Therms 
Savings (per 
thermostat) % Savings 

Yes 79 148 1,216 1,366 1,185 180 ± 271 13.2% ± 19.8% 

No 54 96 1,920 1,639 1,526 113 ± 226 6.9% ± 13.8% 

 

4.3.2 Building Characteristics 
Figure 14 (kWh) and Figure 15 (therms) show the annual site-level savings estimates and 
confidence intervals for the sites in this analysis by the building floor area in square feet. These 
point estimates have also been colored by the total number of thermostats installed at each site. 
While there is a general trend toward both greater savings and wider error bounds at larger sites, 
this pattern is not consistent, especially for gas. Trends in gas savings are similar to electric; 
however, fewer of the savings estimates by building size are statistically significant. 



Section 4: Findings 

 

EVERGREEN ECONOMICS  Page 44 

Figure 14: Annual Site-Level kWh Savings by Square Footage of Building 

 

Figure 15: Annual Site-Level therms Savings by Square Footage of Building 
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Next, we estimated thermostat-level kWh savings split by total HVAC cooling capacity (in tons) per 
site and heating capacity (in BTU) per site for the systems with smart thermostats installed. Table 
21 provides our estimated energy savings by the total cooling capacity of the HVAC equipment 
with 95 percent confidence intervals.17 There were no sites in the sample with between 70 and 
149 tons of cooling capacity, and three sites did not provide any data on cooling capacity during 
the audit. As with building size, results for cooling tonnage tended to be mixed, with consistently 
significant savings, but without consistent trends across tonnage categories especially when 
considering the small sample sizes of certain tonnage categories.  

Table 21: Annual Electric Thermostat Savings (kWh) by Total Cooling Capacity  

Total 
Cooling 
Tonnage Sites 

T-
stats 

Original 
Prediction 

Adjusted 
Prediction Actual 

Annual kWh Savings 
(per thermostat) % Savings 

0 - 10 138 196 32,834 33,891 29,752 4,139.0 ± 2,122 12.2% ± 6.3% 

11 - 20 27 89 16,736 18,297 14,763 3,533.8 ± 1,484 19.3% ± 8.1% 

21 - 30 9 52 22,000 22,729 18,589 4,140.4 ± 1,358 18.2% ± 6.0% 

31 - 150 5 55 * * * * * 

Unknown 3 18 * * * * * 

* We omitted customer groups with fewer than five customers, as the sample is likely too small to draw meaningful 
conclusions from.  The sites in the highest capacity group 31-150 tons were too varied to be useful; these sites had 35, 
36, 41, 66, and 141 tons of cooling capacity.  

Table 22 (kWh) and Table 23 (therms) provide a similar comparison of energy savings by total 
heating capacity in BTU for sites with gas heating. The 34 electric sites and 8 gas sites that do not 
have data on heating capacity are electrically heated. As with cooling capacity, kWh savings are 
significant for each heating capacity bin, but there is no broad trend across bins. For gas savings, 
on the other hand, only buildings with 200,001 to 400,000 total heating BTU were observed to 
have large and significant gas savings. 

 

17 We did not include comparable analysis for gas savings as we do not expect a relationship between cooling capacity 
and gas savings.  
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Table 22: Annual Savings per Thermostat by Total Heating Capacity (kWh) 

Total Heating BTU Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Annual kWh 
Savings (per 
thermostat) % Savings 

0 – 200,000 95 123 34,113 35,794 31,689 4,106 ± 2,210 11.5% ± 6.2% 

200,001 – 400,000 38 101 21,926 22,760 19,080 3,680 ± 1,404 16.2% ± 6.2% 

400,001 – 600,000 8 42 15,406 15,727 13,573 2,155 ± 948 13.7% ± 6.0% 

600,001 – 800,000 7 67 14,287 13,973 10,079 3,894 ± 1,687 27.9% ± 12.1% 

N/A, electric heat 34 77 31,778 30,920 26,429 4,491 ± 3,040 14.5% ± 9.8% 

 

Table 23: Annual Saving per Thermostat by Total Heating Capacity (therms) 

Total Heating BTU Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Annual Therms 
Savings (per 
thermostat) % Savings 

0 – 200,000 105 141 1,397 1,454 1,339 114 ± 255.6 7.8% ± 17.6% 

200,001 – 400,000 30 84 1,128 1,221 923 298 ± 206.8 24.4% ± 16.9% 

400,001 – 600,000 7 35 598 598 559 39 ± 38.9 6.5% ± 6.5% 

600,001 – 800,000 3 29 * * * * * 

N/A, electric heat 8 29 4,293 2,955 2,573 382 ± 246.4 12.9% ± 8.3% 

* We omitted customer groups with fewer than five customers, as the sample is likely too small to draw meaningful 
conclusions from. 

We also analyzed how savings varied by business type, as shown in Table 24 (kWh) and Table 25 
(therms). Electric savings rates varied considerably across business type, although savings for all 
business types were significant. Outside of “Other” businesses, kWh savings were highest on a 
percentage basis in schools and medium offices, and highest in kWh terms in food service 
businesses. Retail (both small and medium) and small offices tended to have lower savings. For 
gas, food service had especially high savings in terms of therms, while hospitality (including non-
hotel) as well as medium offices had the highest percentage savings. A number of business types 
had insignificant gas savings, including small retail, which was the only business type to show 
negative gas savings. 
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Table 24: Annual Electric Savings by Business Type (kWh) 

Business Type Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual 

Annual kWh 
Savings (per 
thermostat) % Savings 

Food Service 54 83 44,510 45,539 39,049 6,490 ± 2,942 14.3% ± 6.5% 

Grocery 2 9 * * * * * 

Hospitality 
Non-Hotel 7 12 25,685 28,090 23,781 4,309 ± 2,765 15.3% ± 9.8% 

Logistics 2 5 * * * * * 

Medium 
Office 20 104 12,507 12,735 10,531 2,204 ± 911 17.3% ± 7.2% 

Medium Retail 5 12 16,215 15,987 14,466 1,520 ± 784 9.5% ± 4.9% 

Other 10 45 18,669 19,993 13,488 6,505 ± 3,448 32.5% ± 17.2% 

School 10 39 18,979 19,370 15,528 3,842 ± 1,494 19.8% ± 7.7% 

Small Office 38 59 14,354 15,148 13,485 1,663 ± 1,228 11.0% ± 8.1% 

Small Retail 34 42 39,724 40,658 37,391 3,266 ± 2,327 8.0% ± 5.7% 

* We omitted customer groups with fewer than five customers, as the sample is likely too small to draw meaningful 
conclusions from. 
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Table 25: Annual Gas Savings by Business Type (therms) 

Business Type Sites 
T-

stats 
Original 

Prediction 
Adjusted 

Prediction Actual 
Annual Therms 

Savings % Savings 

Food Service 44 73 3,259 3,205 2,697 508.2 ± 421.75 15.9% ± 13.2% 

Grocery 1 4 * * * * * 

Hospitality 1 2 * * * * * 

Hospitality 
Non-Hotel 6 12 472 668 358 310.0 ± 120.46 46.4% ± 18.0% 

Logistics 2 5 * * * * * 

Medium 
Office 12 57 553 553 453 99.7 ± 65.51 18.0% ± 11.8% 

Medium Retail 2 5 * * * * * 

Other 13 47 772 773 705 68.1 ± 134.70 8.8% ± 17.4% 

School 9 20 979 985 923 62.1 ± 63.67 6.3% ± 6.5% 

Small Office 46 72 472 465 438 27.5 ± 64.81 5.9% ± 13.9% 

Small Retail 17 21 1,347 1,321 1,585 -263.7 ± 
276.89 

-20.0% ± 
21.0% 

* We omitted customer groups with fewer than five customers, as the sample is likely too small to draw meaningful 
conclusions from. 

Figure 16 shows the load shape impacts for the most common business types in the sample. As 
with the previous load shape figures, our prediction is based on the pre-period model and post-
period weather data for each season; it represents the expected load shape for these customers in 
absence of program pilot participation and has been adjusted to account for NREs. The error of 
each hourly prediction is depicted as a 95 percent confidence interval in the shaded area around 
each estimate. Whenever the actual post-period load shape (blue line) falls outside the predicted 
post-period load region (red area), this indicates that a statistically significant change was 
observed during that hour. The AMICS model finds statistically significant reductions in the whole-
building energy usage for pilot participants across all hours of the day for the food service and 
medium office business types. The small retail business type had relatively low savings with a few 
insignificant hours, while the small office type had even lower savings, and many hours were 
insignificant.  
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Figure 11: Annual Load Shape Impacts for Select Business Types (average site on an average day) 

 
Overall, our analysis suggests that annualized per-thermostat savings, for both therms and kWh, 
do not correlate with many building type factors. The one possible exception to this is business 
type, where considerable variation in savings does exist. While the COVID-19 pandemic may 
obscure the exact magnitude of these results, our results consistently find that smart thermostats 
are saving significantly more energy than the ex-ante kWh savings estimate in the measure 
approval document.  

4.4 Impacts Over Time 
This section provides the estimated impact of the thermostat pilot over time in terms of the 
estimated energy savings from the billing analysis.  

In addition to developing point estimates for thermostat impacts, we also used billing analysis 
results to assess how savings varied over time. Figure 17 (kWh) and Figure 18 (therms) show the 
average weekly energy savings per thermostat by primary heating fuel at the site. Results have 
been aggregated on a weekly basis to show general trends, minimizing the noise introduced by 
changes in operations throughout the week. The values represent savings during a typical weather 
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year (TMY3) and include our adjustment for the COVID-19 pandemic. Sites with multiple measures 
and measures with few sites represented (i.e., gas savings for electrically-heated sites) have been 
removed from this analysis. Electric savings at sites heated with gas appear to be stable with 
minimal seasonal variation. This suggests that most of the electric thermostat savings in these 
cases are coming from ventilation or fan motors, rather than from cooling. Electrically-heated sites 
had much more variability in electric savings throughout the year, with the lowest savings in the 
fall (Sept-Nov) followed by a rapid increase in savings during two winter months (Dec and Jan). For 
gas (Figure 18), savings increased dramatically during part of fall and all winter months (Nov-Feb) 
with a low level of non-zero savings throughout the rest of the year. This is not surprising, as gas 
savings are expected to come from gas heating, reducing waste through scheduling.  

Figure 17: Thermostat Electric Weekly Savings (kWh) by Primary Heating Fuel 
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Figure 18: Thermostat Gas Weekly Savings (therms) for Gas Heat 
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5 Conclusions  
 

Smart thermostats are theorized to save energy in commercial buildings through temperature 
setbacks, improving fan mode scheduling, and adjusting settings during unoccupied hours.  

Our energy and demand savings estimates from the billing analysis confirmed that the smart 
thermostats installed by Portland General Electric (PGE) that also qualified for Energy Trust of 
Oregon (Energy Trust) incentives led to statistically significant reductions in kWh across all hours of 
the day, seasons, and day types and statistically significant therm reductions under specific 
conditions (with insignificant or negative savings under others). 

We recommend that Energy Trust continue to incentivize both Ecobee and Pelican smart 
thermostats for commercial buildings and then conduct a second impact evaluation to update 
the energy savings in the Measure Approval Document (MAD). Our results consistently find that 
these devices are saving significantly more energy than the ex-ante electric (kWh) savings estimate 
in the MAD (see Figure 6), with positive though statistically insignificant gas savings.  

The COVID-19 pandemic is challenging to control for. We have made every effort to control for the 
impacts of the pandemic with customized site-level non-routine adjustments. However, due to the 
variable impact of the COVID-19 pandemic on energy usage in businesses over time (e.g., shelter in 
place orders, gradual reopening, and later Centers for Disease Control and Prevention (CDC) 
recommendations for increased ventilation), it is likely that the pandemic was not fully captured 
by our adjustments and will have some impact on our savings estimates (see Figure 7). The COVID-
19 pandemic creates uncertainty around the magnitude of savings. However, we are confident 
that electric savings meet or exceed ex-ante values, as this was clearly observed prior to the start 
of the COVID-19 pandemic at many participating sites as well as at sites whose energy usage was 
not noticeably impacted by the COVID-19 pandemic. Please refer to the end of this chapter for our 
recommendations for a second impact evaluation that would address the remaining sources of 
uncertainty in the savings estimates for smart thermostats.   

Below, we provide a summary of the key findings from the impact evaluation as they relate to 
each of the research questions: 

1. What are the overall energy and demand savings of commercial smart thermostats? 

Acknowledgement of Limitations: Our analysis of 11 sites that installed the smart 
thermostats prior to the start of the COVID-19 pandemic confirmed that these smart 
thermostat devices led to statistically significant reductions in energy usage, which aligned 
with the ex-ante savings listed in the MAD before the start of the pandemic. We found 
higher electric and gas savings in the first year of the pandemic despite controlling for 
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differences in weather and seasonality, though the difference was not statistically 
significant. This increase in savings appears to be tapering off, with the second year of the 
pandemic dropping closer to the pre-COVID savings. Savings estimates presented in this 
report should be interpreted with caution. Most of the impact of the COVID-19 pandemic 
has been corrected, but some lingering impacts may remain embedded in the savings 
estimate. Despite these limitations, we are very confident that these thermostats are 
achieving at least the ex-ante savings values, especially in terms of kWh.  

A total of 410 thermostats were installed at the 182 sites included in the electric billing 
analysis, and 318 thermostats were installed at 153 sites for gas. In most cases, our 
weather-normalized electric savings estimates per thermostat greatly exceeded the ex-
ante savings values listed in the MAD, and gas savings were insignificant. 

• Most of the thermostats in our sample were installed in non-grocery buildings with 
gas heat and cooling (n=144 sites and 315 thermostats). They saved an average of 
3,429.3 ± 2,356 kWh per year, far exceeding the ex-ante savings of 255 kWh. The gas 
savings were insignificant at 154.8 ± 236.1 therms per year.  

• Savings for a grocery building with gas heat and cooling (n=1 site and 5 thermostats) 
were insignificant for both fuels and may not be representative.    

• Savings for non-grocery buildings with electric heat and cooling varied by heat type, 
with heat pumps saving 4,856.6 ± 1,565.6 kWh per year and resistance heat saving 
1,239.0 ± 2,171.4 kWh per year.  

The smart thermostats reduced electric demand by 0.52 kW (11%) in sites with electric 
heat and 0.94 kW (25%) in sites with gas heat during utility peak hours on the hottest days 
of the year (daily average temperatures between 72°F and 84°F with a high of 98°F). On the 
coldest days of the year (average daily temperatures between 38°F and 31°F with a low of 
24°F), the thermostats reduced demand by 0.62 kW and 0.61 kW (13% and 11%) for sites 
with electric and gas heat, respectively.  

These findings suggest that smart thermostats are a useful measure for both energy and 
demand savings for commercial sites.  

2. What are the distributions of energy and demand savings by major bins (e.g., weekday 
afternoons in the winter)? 

We found statistically significant kWh savings in the whole-building energy usage for pilot 
participants across all hours of the day for each season, day type, and time-of-use  period. 
However, the magnitudes and hours of peak savings varied. Gas savings were statistically 
significant only in winter. 

• The highest electric and gas savings were observed in the winter.  
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• Smart thermostats do offer electric savings during weekday on-peak hours for both 
summer and winter, but the greatest savings occur off-peak on Sunday afternoons 
in winter.  

• For sites with gas heat, gas savings were much higher during the winter heating 
months (Nov-Feb) with a low level of non-zero savings throughout the rest of the 
year. Electric savings were stable throughout the year, which suggests that the 
electric savings are from improvements to ventilation rather than cooling load.  

• For sites with electric heat, energy savings were the lowest in the fall (Sept-Nov) 
and then rapidly increase in early winter (Dec-Jan). 

Our findings are consistent with the theory that smart thermostats can provide energy 
savings during peak hours through temperature setbacks in summer months and setups in 
winter months. Off-peak savings will also come from the thermostats reducing HVAC usage 
when the buildings are unoccupied, which occurs more often on weekends and overnight. 

3. What are the trends in energy and demand savings over time? 

Electric savings were relatively flat throughout the year, except for an increase in savings 
during the winter for the subset of sites with electric heating. As expected, gas savings 
were much higher in the winter months corresponding with gas heat. 

4. What are the energy and demand savings impacts by thermostat manufacturer, thermostat 
settings, building characteristics (HVAC capacity, floor area, percent conditioned space), 
and business type? 

Thermostat manufacturer: The majority of smart thermostats included in this analysis 
were Ecobee EMS-SI (77% of thermostats in the electric analysis and 88% in the gas 
analysis) with the remainder being Pelican TS-200s. Electric savings were statistically 
significant for both thermostats although the count of Pelican thermostats was low. 
Baseline usage and kWh savings varied dramatically between the two thermostat groups, 
with average savings of 13 percent for Ecobee thermostats and 20 percent for Pelican 
thermostats, corresponding to annual per-thermostat savings of 4,048 kWh and 2,983 
kWh, respectively. The gas savings for Ecobee thermostats were not statistically significant 
(11% or 158 therms), but Pelican thermostats saved 19 percent or 216 therms per 
thermostat per year.  

It is difficult to draw robust conclusions about whether the observed differences in energy 
savings are driven more by the physical device, thermostat functionality (with only the 
Pelican thermostats capable of controlling economizers), square-footage controlled by the 
thermostat (with Pelicans controlling larger spaces on average), business type, program 
design, or random chance.  
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Thermostat settings: While there was no way to assess how the new schedules differed 
from the previous schedules (as this information was not collected during the audit), 
participants did report whether a schedule existed before installation. The electric savings 
estimates were very similar, and gas savings were not statistically significant. The future 
application programming interface (API) analysis will provide more insight into the 
similarities and differences in thermostat settings. 

Building Characteristics 

• HVAC capacity: On a per-thermostat basis, there was no consistent relationship 
between electric savings by total cooling capacity or total heating capacity (BTU) in 
total fuel savings or as a percentage of baseline energy usage. 

• Floor area: We did not observe a consistent relationship between floor area and 
per-thermostat savings. We observed small and/or insignificant gas savings across 
nearly the full range of building sizes.  

• Percent conditioned space: We did not explore savings by the percentage of space 
conditioned because the applicable MAD (version 235.1) lists semi-conditioned 
spaces as disqualified from receiving Energy Trust incentives.  

Business type: Business type was a relatively strong determinant of savings. Electric savings 
were highest on a percentage basis in schools (n=10 sites) and medium offices (n=20), and 
highest in kWh terms in food service businesses (n=54). Small retail (n=34 sites), medium 
retail (n=5 sites), and small offices (n=38) tended to have lower electric savings. In terms of 
gas savings, food service (n=44 sites) had especially high savings in terms of therms, while 
non-hotel hospitality (n=6) and medium offices (n=12) had the highest percentage savings. 

5.1 Recommendations for Future Research 
We recommend that Energy Trust conduct a second impact evaluation in the future to refine the 
savings estimates by business type and heating type, avoiding much of the uncertainty caused by 
the COVID-19 pandemic and sample attrition. A future evaluation of these commercial smart 
thermostats should do the following to reduce sample attrition and limit sources of uncertainty:  

• Allow more time to elapse: For the most accurate estimates, future evaluations could 
focus on thermostats installed at least 12 months after the end of the shelter-in-place 
orders (when businesses have settled into a new normal) so that the COVID-19 pandemic 
will have limited impact on the baseline or post-period of the analysis. Best practice is to 
require 12 months of post-installation to observe a full year at every site. The results from 
this timeframe would provide more concrete estimates of the energy savings attributable 
to these smart thermostats that will be applicable to a post-pandemic economy. Where 
possible, additional data going back to before the start of the pandemic could help 
determine how much participants changed their energy usage at the start of the pandemic, 
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which would make it possible to detect if/when this change stops. Identifying sites where 
pandemic impacts have normalized will aid considerably in attributing energy usage 
changes to the program.  

• Develop a matched comparison group: To further aid in the ability of the evaluation to 
attribute savings to the program, we recommend matching participants to future program 
participants to form a comparison group. This may enable future evaluations to control for 
the pandemic-related energy usage changes that may affect sites either pre or post 
installation. This should be especially effective in aggregate, while site-level savings 
estimates may end up being less reliable given that the random usage patterns of two sites 
will affect savings. Future participants are preferable to non-participants as they have 
already consented to share data, and they are more likely to match on unobserved 
characteristics such as the desire for a smart thermostat and a propensity to adopt Pelican 
versus Ecobee smart thermostats.  

• Reduce attrition with daily models and aggregation: We may see less attrition with daily 
models in the billing analysis, as commercial sites are more difficult to predict hour-by-hour 
than day-by-day. All of the annual and seasonal impacts by customer segment could have 
been derived from a daily model. An hourly model will still be required for the demand 
savings and energy savings by time-of-use. To further minimize attrition, we recommend 
focusing on aggregate impacts for each measure. Site-level models are more efficient for 
creating breakouts by customer segment, but this comes at the cost of attrition as some 
customers’ energy usage cannot be adequately explained by variations in weather, season, 
time of day, and day of week.  

• Estimate savings by measure type: The primary application for these measures appears to 
be non-grocery buildings with gas heat (n=144 sites). We had a single grocery site with gas 
heat, which had statistically insignificant negative savings. Our sample size was also too 
small to investigate trends in savings for sites with electric heat (n=9 resistance and n=19 
heat pump) by customer segment. These measures are worth additional investigation 

• Identify required breakout groups: To ensure that results from the evaluation are useful 
for updating the MAD and meet all other stakeholder needs, we recommend compiling a 
list of requested breakout groups (e.g., savings by building size and fuel type) early in the 
evaluation planning process. The evaluation staff then can monitor the list of incoming 
participants, waiting for sufficient sample in each of the breakout groups before initiating 
the start of the evaluation. 
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MEMORANDUM 

Date: October 18, 2022 

To:  Sarah Castor, Energy Trust of Oregon 

From: Sarah Monohon, Evergreen Economics and John Flotterud, Driftless Energy 

Re:  PGE Commercial Smart Thermostat Pilot Evaluation: Pelican and Ecobee API Analysis 

 

This memo provides an addendum to the Portland General Electric (PGE) Commercial Smart 

Thermostat Pilot Evaluation draft report, adding insights derived from analysis of the 

application programming interface (API) data from Pelican and Ecobee smart thermostat. This 

analysis spans the first quarter of 2020 through the first half of 2021.  

The first draft of the evaluation report issued in August 2021 included analysis of Pelican 

thermostat API data from January 2020 through July 2020 as well as data from October 2020 

(August and September 2020 data were not included in the dataset).1 The original Pelican data 

included 51 thermostats located in 14 facilities with 6 medium offices, 4 schools, 1 small retail, 

and 3 others.  

The updated datasets for Pelican and Ecobee allowed us to compare the first quarter of 2020 to 

the first quarter of 2021 to identify any differences in the operation of facilities between the 

period before the COVID-19 pandemic and during the pandemic. 

Pelican provided an updated API dataset that included data from October 2020 through 

December 2021. This additional thermostat data rounded out the 2020 heating season and 

added the 2021 cooling and heating seasons. There is, however, still a gap in provided Pelican 

data for August and September of 2020. Our analysis now incorporates data from Pelican 

thermostats through December 2021 except for two thermostats with data only through March 

2021, one with data through April 2021, and two with data through June 2021. These additional 

data provide more insight into the change of setback/setup temperatures over time and per 

heating/cooling season.  

 

1 Evergreen Economics and Driftless Energy. 2021. PGE Commercial Smart Thermostat Evaluation: Draft Report.  
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Similarly, Ecobee provided an updated API dataset that included data from January 2021 

through December 30, 2021; however, data were only analyzed through March 31, 2021 as this 

was sufficient to address the primary objective of characterizing the impact of the COVID-19 

pandemic on thermostat settings. This updated analysis spans from January 1, 2020 in the 

original Ecobee data through March 2021 in the updated Ecobee data. The original Ecobee data 

included 347 thermostats in 193 facilities (19 medium office, 17 schools, 27 small retail, 1 

logistics, 43 food service, 57 small office, 1 grocery, 5 medium retail, 7 hospitality-not hotel, 1 

hospitality, 15 other). This analysis retains 317 of the 347 thermostats in the new dataset.  

The distribution of the respective setback and setups for each smart thermostat for 2020 and 

2021 is shown in Figure 1. We identified minimal change in these distributions when including 

additional data. 
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Figure 1: Distribution of Setback/Setup Ranges by Thermostat Type in 2020 and 2021 

 

 

2020
 

2021
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Methods 
The methods and qualifying criteria used in the analysis of the additional 2021 data is the same 

as used in the Portland General Electric (PGE) Commercial Smart Thermostat Pilot Evaluation 

draft report. The list of qualifying sites was retained, and data sets were not re-evaluated to 

determine if the additional data would increase the sample of qualifying thermostats. The 

methods used to develop the qualifying list in the original report are outlined below. 

The original API data provided by Energy Trust of Oregon included 120 Pelican and 658 Ecobee 

smart thermostats. We removed thermostats from the sample that were installed at sites that 

failed one or more of the following Energy Trust incentive eligibility criteria: 

• The site was an existing building (i.e., not new construction); 

• The site was a commercial site that had a floor area less of than 200,000 square feet; 

• The site installed one of the two approved smart thermostat models (Pelican TS-200 and 

Ecobee EMS-SI); 

• The site was not lodging with 24/7 operations (due to the lack of savings opportunities 

from setbacks), a semi-conditioned space, or in Heating Zone 2; 

• The site was enrolled in the PGE Schedule 25 thermostat program; and/or 

• The site was listed as Does Not Qualify (DNQ) by Energy Trust (e.g., manufacturing, non-

qualifying gas rate code, mixed use). 

We required a minimum of 60 days of API data from each thermostat. The final dataset from 

Pelican included 8 facilities and 51 smart thermostats, while Ecobee included 193 facilities and 

347 smart thermostats that met Energy Trust program eligibility criteria with sufficient data for 

the API analysis. The Pelican thermostats were largely installed before 2020 with a few added in 

the first quarter of 2020. The Ecobee thermostats were largely installed up to August of 2020. 

The structure and contents of the API data presented some additional challenges: 
 

• The Pelican thermostats, while capable of controlling economizers, do not record any of 
the economizer operating parameters within the API data, preventing the team from 
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verifying both the Pelican’s performance with this feature and its compliance to the 
Measure Approval Document (MAD) requirements.2  

• Both thermostats include primary heating time within their auxiliary heat metrics, but 

we were unable to investigate how often the thermostats implemented auxiliary heat.  

• The Ecobee does not provide an indicator on how the setpoints were changed; that is, 

whether it was a scheduled change or a manual override. The Pelican does include an 

indicator for whether a setpoint change was initiated on the physical device or online 

but does not distinguish between setpoint overrides and holds.  

The Pelican data document each instance when a setting is changed (including temperature). 

This method often results in an observation every few minutes, but there are many instances 

with large gaps in time. It is not possible to discern which of these large gaps (sometimes more 

than a month) are data losses as opposed to long time spans with no changes in thermostat 

settings. To limit the influence of these long and possibly erroneous time intervals, we limited 

the Pelican analysis to intervals of five minutes or less. 

API Data 
The provided API data included numerous variables that were consistent across the Pelican and 

Ecobee data sets, across both collected time periods. Unfortunately, there were several 

variables that were missing from one or more sources. The provided API data points are shown 

below in Table 1 for each of the two data extracts for both Ecobee and Pelican thermostats.  

 

2 During the audit, the following HVAC system parameters were recorded: HVAC Type (RTU/Package, Split System, 
Standalone furnace), Fuel type (Gas & AC, Electric Resistance, Heat Pump) nominal heating and cooling size. There 
is no variable indicating if economizer was present or enabled.  Economizer control was not a measure 
requirement; however, this additional feature has the potential to increase (or decrease) savings for this 
thermostat compared to others without this feature. 
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Table 1: API Data Provided by Source 

Variable Data 
Ecobee 

2020 
Ecobee 

2021 
Pelican 

2020 
Pelican 

2021 

HVAC Mode/Run Status Off, Auto, Cool, Heat, Aux Heat X X X X 

Run Status Off, Cool, Heat     X X 

Zone Calendar Auto, Hold, Fan on, Custom X X     

System Auto, Off, Cool, Heat     X X 

Zone Climate/Status Occupied, Unoccupied   X X X 

Temperature Indoor space temperature X X X X 

Heating Temperature Heating setpoint temperature X X X X 

Cooling Temperature Cooling setpoint temperature X X X X 

Outdoor Temperature Outside air temperature X       

Humidity Humidity   X     

Fan Auto, On     X X 

Fan Seconds X X     

Aux Status Off, On     X X 

Aux Heat 1 Seconds X X     

Aux Heat 2 Seconds X X     

Aux Heat 3 Seconds X X     

Comp Heat 1 Seconds X X     

Comp Heat 2 Seconds X X     

Setback Off, On     X X 

Setby Schedule, Remote, Station     X X 

 

The analysis approach utilized variables that were consistent across both thermostat types. This 

impacted our methodology for determining occupied and unoccupied setpoints. The Ecobee 

data were missing the Occupied/Unoccupied variable in the first data set and did not include 

the setback variable provided by Pelican. The occupied and unoccupied temperatures were 

determined by looking for the average heating and cooling temperature each month and 

categorizing the values based on being greater than or less than the average temperature. For 

example, if the average heating temperature is 65, the setpoint value of 68 is categorized as 

occupied while the setpoint of 60 is categorized as unoccupied. 

The Pelican data did not have any indicator for “Holds” nor any data related to economizer 

operation.   
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Temperature Setpoints 
The Pelican and Ecobee smart thermostats are theorized to save energy by improving the 

efficiency of the HVAC operation through programming multiple temperature set points and 

schedules. These thermostats use four separate temperature setpoints: 

1. Occupied heating 

2. Occupied cooling 

3. Unoccupied heating 

4. Unoccupied cooling 

Using separate set points for heating and cooling during occupied hours reduces the likelihood 

that the HVAC will turn on, as there can be a wide range of acceptable temperatures. For 

instance, instead of setting the thermostat to 70° Fahrenheit (F), one could have the system 

heat to 65°F and cool to 75°F. If the existing thermostat had a single setpoint instead of 

separate heating and cooling setpoints, then we would expect to see savings from the 

installation of the smart thermostat. More than half (63%) of the existing thermostats had 

schedules at the time of the audit, but there is no additional information on the schedule or set 

points. 

The two unoccupied setpoints are designed to allow the indoor temperature to be more 

variable when occupant comfort is not a concern. For example, one might choose a reduced 

heating setpoint of 55°F (a setback) and an increased cooling setpoint of 85°F (a setup) to 

prevent the building from becoming extremely hot or cold, while cutting back on energy waste. 

Individual businesses will have varied preferences for all four temperature setpoints. 

Fortunately, as long as the thermostats are being set back (heating) and set up (cooling) during 

unoccupied hours (and the building does have unoccupied hours), we would expect to see 

some savings. The scheduling functionality is feasible with a programmable thermostat. The 

smart thermostats add features like remote access, more custom scheduling options, varying 

duration of holds, and integration with utility demand response programs. One of the expected 

savings mechanisms for smart thermostats are from limited duration overrides, to avoid 

permanent setpoint changes in response to temporary discomfort.  

Pelican Smart Thermostats 

The Pelican smart thermostats in our sample had average setbacks of 7.3 ± 1.7°F and setups of 

8.0 ± 3.6°F from January through July of 2020 and in October 2020. Figure 2 shows that the 

decrease in Pelican setbacks that we had observed from March to July 2020 was temporary, 

and that the October 2020 setpoint we observed was more representative of where the 
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setback would hold for the winter. The average setback of the Pelican thermostats through the 

end of 2021 was 7.3°F, and the average setup was 8.1°F.  

Figure 2 shows that the setback/setup levels appeared to change in a cyclical nature, with 

increased setup over the summers of 2020 and 2021, which was reversed by October each year. 

Likewise, it appears that the setback increased in the winter and the setup decreased slightly in 

the winter.  

Figure 2: Pelican Smart Thermostat Setback and Setup 

 

Setback and setup are calculated as the difference between multiple setpoint temperatures: 

the difference between the occupied and unoccupied setpoint for heating (setback) as well as 

the occupied and unoccupied setpoint for cooling (setup). These temperatures are shown in 

Figure 3 and Figure 4. The goal for this analysis was to understand if the seasonal changes in 

setpoints were due to changes in the occupied or unoccupied setpoints, or both. 

The occupied heating setpoint shown in Figure 3 varied the most over time, increasing and 

decreasing with the seasons with an overall decrease in the setpoint. The unoccupied setpoint 

has been very stable, with an overall slight downward trend over the two-year analysis period. 

The occupied setpoint varied with the heating season, with the setpoint increasing during the 

winter and decreasing in the summer. This suggests that the occupants increased the 

temperature settings during occupied hours to improve comfort as the ambient outdoor 

temperatures got colder. They did not adjust the unoccupied setpoint, leading to an overall 
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increase in the average setback. This combination led to the increased setback observed during 

the winter months, as the setback is based on a comparison between the occupied and the 

unoccupied setpoints. In other words, the increased setback in winter months was not due to 

reducing the temperature at night but was due to increasing the occupied setpoint 

temperature during the day.  

Figure 3: Pelican Heating Setpoints 

 

The cooling occupied and unoccupied setpoints shown in Figure 4 both decreased over time, 

which suggests an increase in cooling and a corresponding increase in energy usage (i.e., a 

reduction in energy savings) over time. The cooling setpoints also appear to have varied over 

time, with the greatest change occurring during the occupied period. The occupied setpoint 

decreased slightly faster than the unoccupied setpoint, resulting in a small increase in the 

average setup over time. The average setup increased from 8.0°F in 2020 to 8.1°F in 2021.  

Similar to the heating setback trends, the cooling setups increased during the summer months, 

and this change was due to the lowering of the occupied setpoint during the day and not due to 

an increased setting back of the unoccupied cooling setpoint.  
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Figure 4: Pelican Smart Thermostat Cooling Setpoints 

 

Ecobee Smart Thermostats 

The Ecobee thermostats in our sample had average setbacks of 8.0 ± 3.7°F and setups of 8.7 ± 

3.9°F from January through December of 2020. Figure 5 shows that after the initial drop in 

Ecobee setback observed in January and February of 2020, the setpoint stabilized to only a 

small decrease in setback over time. The average setback of the Ecobee thermostats through 

March 31, 2021 was 7.7°, and the average setup was 8.8°. 
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Figure 5: Ecobee Smart Thermostat Setback and Setup 

 

As mentioned earlier, setback and setup are calculated as the difference between multiple 

setpoint temperatures: the difference between the occupied and unoccupied setpoint for 

heating (setback) as well as the occupied and unoccupied setpoint for cooling (setup). These 

temperatures are shown in Figure 6 and Figure 7. The goal for this analysis was to understand if 

the seasonal changes in setpoints were due to changes in the occupied or unoccupied 

setpoints, or both. 

The occupied heating setpoint shown in Figure 6 has been very stable over the entire dataset. 

The unoccupied setpoint has been trending upwards over the entire dataset and unlike in the 

Pelican data where the changes were corrected after each season, the Ecobee unoccupied 

setpoint has been consistently increasing, resulting in reduced savings. This has decreased the 

setback (the difference between the occupied setpoint [solid line] and unoccupied setpoint 

[dotted line]) over time from 8.0°F down to 7.7°F in 2021.   
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Figure 6: Ecobee Smart Thermostat Heating Setpoints 

 

The cooling occupied and unoccupied setpoints shown in Figure 7 both decreased over time, 

which suggests an increase in cooling and a corresponding increase in energy usage (i.e., a 

reduction in energy savings) over time. The cooling setpoints also appear to have varied over 

time, with the greatest change during the occupied period, similar to what we observed in the 

Pelicans. The occupied setpoint decreased slightly faster than the unoccupied setpoint, 

resulting in a small increase in the average setup over time. The average setup increased from 

8.7°F in 2020 to 8.8°F in 2021.  

The Ecobee results for the setback are different from the results observed for the Pelican data 

and the setup data for Ecobee. The Ecobee occupied heating setpoint was found to be very 

stable with only small variations in setpoints between the heating and cooling seasons, while 

the Pelican and Ecobee setups observed the most variation in the occupied setpoint between 

the heating and cooling season. The unoccupied setpoints were found to be very consistent 

with nearly no changes for the Pelican heating setpoint and the cooling setpoints for both being 

very consistent with only small decreases in the setpoint over time. The Ecobee unoccupied 

heating setpoint was found to be consistently increasing over time.  
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Figure 7: Ecobee Smart Thermostat Cooling Setpoints 

 

Unoccupied Hours 
The overall trend shown in Figure 8 indicates that the proportion of occupied and unoccupied 

hours of Pelican and Ecobee smart thermostats were relatively consistent over the study 

period, except for the second quarter of 2020 for Pelican. However, there were some significant 

limitations in our analysis of unoccupied hours. An Ecobee smart thermostat logs data every 

five minutes, so any gaps in data from communication or device failures are easily identified as 

missing data. The Pelican logs data only when changes are made, which leads to sporadic time 

intervals between observations. We have no way to know whether a long time interval exists 

because there were no changes in the HVAC system operation or if the lack of data is due to 

communication or device failure. We imposed a filter on the Pelican data, limiting the time 

intervals between observations to a maximum of five minutes per data point (i.e., removing 

observations that are further apart), to be consistent with the Ecobee data for this comparison. 

If we remove the cap, the percentage of unoccupied hours increases for Pelican and align more 

closely with Ecobee, though this would introduce more uncertainty from large gaps in data. This 

increase in unoccupied hours makes sense, as there would be fewer changes during unoccupied 

hours, leading to more time intervals that exceed the five-minute threshold. This means that 

unoccupied hours are less likely to be retained in the filtered dataset, reducing the overall 

average percentage of hours flagged as unoccupied in the Pelican data. Figure 8 should be 

interpreted as a lower bound for the true percentage of unoccupied hours for Pelicans, with the 
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true value falling somewhere between the values shown for Pelican and Ecobee smart 

thermostats.  

Figure 8: Percent of Unoccupied Hours 

 

The percent unoccupied hours by building type is shown in Figure 9. There does not appear to 

be any drastic difference between Ecobee and Pelican thermostats on how they perform with 

regards to unoccupied hours based on building type. 
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Figure 9: Average Percent Unoccupied Hours by Building Type 

 

COVID-19 Pandemic 
The evaluation of the commercial smart thermostats was complicated by the start of the 

COVID-19 pandemic in March 2020. The first three months of Pelican and Ecobee API data were 

logged prior to the first COVID-19 shelter-in-place orders, before there was a large societal 

response to the pandemic. Once shelter-in-place orders went into effect, the occupancy and 

use of many commercial facilities were altered, and it is unclear how these changes may have 

affected the savings attributable to commercial smart thermostats.  

Figure 10 through Figure 13 compare the first three months of 2020 (before the COVID-19 

pandemic) to the first three months of 2021 (during the COVID-19 pandemic) to look for any 

meaningful differences between the setpoints. The solid lines show the average setup and 

setback, while the dotted lines show a standard deviation.  We did not observe any substantial 

or statistically significant differences in overall setback or setup points between the first 

quarters of 2020 and 2021. The downward slope of the 2020 setback temperatures is steeper 

than for 2021, though the difference is subtle, not statistically significant, and this reduction 

only appeared in the first month or two for both Pelican and Ecobee smart thermostats before 

stabilizing for the remainder of the period. It is hypothesized that some of this initial drop could 

be due to adjustments being made shortly after the thermostats were installed.  
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Figure 10: Comparison Between Pelican Setback in Q1 of 2020 and 2021 

 

Figure 11: Comparison Between Pelican Setup in Q1 of 2020 and 2021 
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Figure 12: Comparison Between Ecobee Setback in Q1 of 2020 and 2021 

 

Figure 13: Comparison Between Ecobee Setup in Q1 of 2020 and 2021 

 

Figure 14 makes the same comparison of the first quarters of 2020 and 2021 for the percentage 

of unoccupied time. It was expected there was a possibility of unoccupied time increasing once 
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the pandemic took effect as businesses reduced hours of operation or office hours. This, 

however, was not observed in the sample of thermostats, and the percentage of unoccupied 

time has remained over the entire dataset. 

Figure 14: Comparison Between Unoccupied Time in Q1 of 2020 and 2021 

 

The results of this limited sample of thermostat data suggests that the COVID-19 pandemic had 

limited effect on the scheduling of the thermostat setpoints. This does not necessarily translate 

into energy usage, as the setpoints are only one component that influences the operation of 

HVAC equipment. While the usage and occupancy of buildings likely changed during the 

pandemic, it does not appear that the setpoints were significantly impacted. 

Conclusions 
The updated API data from Pelican and Ecobee rounded out the 2020 heating season for 

Pelican and added the 2021 cooling and heating seasons for both types of thermostats. These 

additional data made it possible to distinguish some of the seasonal/cyclical changes of setback 

and setup temperatures from longer term changes in setpoints over time; these trends will 

impact the magnitude and persistence of energy savings attributable to the commercial smart 

thermostats. 

Below, we provide a summary of the key findings from the Pelican and Ecobee API analysis as it 

relates to each of the research questions from the broader evaluation: 



   PGE Commercial Smart Thermostat Pilot Evaluation: Pelican and Ecobee API Analysis 

  

 

EVERGREEN ECONOMICS Page 19 

What are the distributions of energy and demand savings by major bins (e.g., weekday 

afternoons in the winter)? 

The Pelican and Ecobee smart thermostats in the API analysis logged around 50 to 65 

percent of hours as unoccupied, when the setback and setup temperatures are utilized. 

Furthermore, the percent of unoccupied hours remained consistent over the duration of 

the study. 

What are the trends in energy and demand savings over time? 

The occupied setpoints of the Pelican smart thermostats were adjusted more frequently 

than the unoccupied setpoints, corresponding to the heating and cooling seasons with 

occupants adjusting the indoor temperatures to be more comfortable as outside 

temperatures became more extreme. One of the expected savings mechanisms was 

from limited duration overrides, but it appears that users were adjusting the setpoint 

instead of overriding. This would lead to an overall effect of increasing energy usage 

(i.e., reducing savings) of the HVAC systems during the coldest days of the winter and 

hottest days of the summer. The unoccupied setpoints were found to be adjusted to 

much less of an extent. This results in increased setback/setup increasing the energy 

savings for the temperature adjustment compared to the changes made during the 

occupied period. The changes to the occupied setpoints during the heating and cooling 

seasons generally reverted to their original setpoints before the end of the season.   

The occupied setpoints of the Ecobee smart thermostats were found to be adjusted less 

frequently than the Pelican setpoints, but the Ecobee unoccupied heating setpoint 

steadily increased over the study period. The overall reduction in setback was mitigated 

slightly by a small increase in occupied heating setpoint; however, increasing either one 

of these results in increased heating energy usage. The Ecobee setup setpoints were 

found to be consistent with the Pelican setup setpoints. 

Overall, the thermostats performed well and were able to retain their occupied and unoccupied 

schedules. It is suspected that the ability to select a temporary “hold” or outright prevent 

permanent “holds” is a key advantage of smart thermostats over traditional programable 

thermostats. The smart thermostats did, however, see decays in both their setbacks and setups 

over time. This is due to changes in the occupied as well as the unoccupied setpoints. The 

performance of smart thermostats is still dependent on the inputs given to them and are 

susceptible to meddling of these setpoints, highlighting the importance of annual or seasonal 

review of the setpoints.   
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While API data is able to tell us what happened to the thermostat settings, it does not provide 

the context into why the change was made, which could be important for savings attribution. 

This data is also unable to provide context on how the users’ operating behaviors may have 

changed with the new thermostats; whether we are observing pre-existing behaviors or a new 

behavior that is specific to the smart thermostats. During the application phase, it would be 

beneficial to collect additional data on the thermostats that were replaced and ask users about 

their operation and interactions with the existing thermostat as a baseline. Future research 

could interview users to ask direct questions about their behaviors surrounding adjustment  of 

the thermostat settings and their decision-making processes to provide a deeper understanding 

of the impact this new technology has had on their behaviors. This exploration would be 

centered around whether the mechanism for energy savings aligns with our expectations.   
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