The Amazing Shrinking Room HPWHs in Less-than-Ideal Spaces

Larson Energy Research Presented by

Ben Larson

Sam Larson

27 February 2025 Energy Trust of Oregon Building Energy Simulation Forum

П

П

Minimum room dimensions

Ventilation

How much does room volume affect HPWH efficiency?

How effectively can efficiency be improved in a small space?

Amazing Shrinking Room

How installation room volume affects HPWH efficiency

. ILER

. ILER

Efficiency Test Procedure

- 18-hr simulated-use test
- Ambient air temperature not controlled
- COP: hot water output / electrical input
- Baseline value established by running procedure with unrestricted access to room-temperature air

Water Heaters Used in Testing					
	Voltex (HPTU) A. O. Smith	Voltex XE (HPTS) A. O. Smith	ProTerra Rheem	AeroTherm Bradford White	
Model Number	HPTU-50N	HPTS-50	XE80T10H45U0	RE2H50S10-1NCTT	
Nominal Storage	50 gal	50 gal	80 gal	50 gal	
Uniform Energy Factor (UEF)	3.45	3.80	4.07	3.44	
Recovery Efficiency	407%	452%	447%	406%	
First Hour Rating (FHR)	66 gal <i>Medium-Usage</i>	65 gal Medium-Usage	87 gal High-Usage	65 gal Medium-Usage	
NEEA AWHS Tier	3	4	4	4	
Introduced	2016	2022	2020	2023	

Amazing Shrinking Room Results

Closed-Room Volume Recommendation

New Construction Single-Family

700 ft³

minimum

Multi-Family or Retrofit

minimum

Explaining the Results

As the heat pump runs, it cools the air. Cooler air results in:

- Decreased water-heating capacity
- Decreased air-cooling capacity
- Increased heat transfer through walls
- Increased tank heat loss

Heat Pump Capacity by Intake Air Temp

Resulting Intake Air Temperature

Resulting Intake Air Temperature

Explaining the Results

After equilibration, if air temperature is...

...within compressor's operating range...

Water heater can complete recovery using solely heat pump. **Efficiency will vary** with that temperature. ...**below** compressor's operating range...

Water heater will resort to ER heating, resulting in unsatisfactory efficiency.

In a multifamily building using residential water heaters, what is the most convenient way to locate them?

A. One water heater inside each dwelling

C. In a single space (basement, mechanical room, etc.) for the whole building

B. Water heaters in multiple utility/mechanical closets through the structure **D.** Water heaters should take up no space

Passive Ventilation

Using convection to replenish thermal resource in a small space

Vertical Distribution of Open Area

130 in² NFA distributed across **8** vertical in:

COP: **1.5** Same as if no openings

115 in² NFA distributed across **80** vertical in:

26

COP: 2.5

Vertical Distribution of Open Area

260 in² NFA divided across **32** vertical in:

COP: **2.7**

260 in² NFA divided across **80** vertical in:

27

COP: 3.4

NFA, in^2

Exchange Air Temperature

Passive Ventilation Recommendation

- Provide a minimum of 300 in² NFA
- Locate openings
 both high and low

Avoid exchanging air with exterior in cooler climates.

IECC Climate Zone				
OK				
Caution				
Inadvisable				

Explaining the Results

Air exchange driven by the "stack" effect

- Heat pump reduces air's buoyancy as it extracts heat
- The cooler exhaust settles downward within the room
- Given sufficient openings, exhaust will exit the room to a space with less-dense air and new air will be drawn in from above

Factors in Passive Ventilation

Cooler intake air provides less heat to heat pump and reduces its capacity

Warmer exchange air provides more heat to HPWH

Heat pump capacity coupled to effectiveness of the convection loop

Lower capacity slows the convection current, further reducing supply of heat

Active Ventilation

Using HPWH's evaporator fan to force exchange of air with another space

Active Ventilation

. ILER

Active Ventilation Results

Active Ventilation Recommendation

Maximize airflow

- Minimize duct length, elbows
- Use large-diameter, rigid ducting
- Select HPWH model with sufficient fan strength

Consider **passive** ventilation if adjacent space is reliably over 50°F Interior spaces
Climate zones 1, 2

Avoid using exterior air source in cool/cold climates Climate zones 5+

Explaining the Results

Heat pump efficiency dependent on access to heat.

- Intake air source temperature will affect efficiency
- Unlike passive, intake air source temperature will not affect thermal resource (exchange air) flow through HPWH closet
- For a given air temperature, the amount of heat delivered to heat pump depends on airflow rate

- Stronger fans increase flowrate
- Static pressure presented by duct decreases flowrate

Passive Ventilation

Minimum 300 in² NFA
Open area high and low

Use when there is a suitable adjacent interior space, or with outdoor air in hot climates

Active Ventilation

- Minimize static pressure
- Ensure fan is sufficient

Use when exchange air source is not reliably above 50°F

Floor Plan Examples

Multifamily

Exterior Closet Options

www.larsonenergyresearch.com

Ben Larson, principal ben@larsonenergyresearch.com

Sam Larson, associate sam@larsonenergyresearch.com

Heat Pump Water Heaters in Small Spaces Lab Testing: "The Amazing Shrinking Room"

https://neea.org/resources/heat-pump-water-heaters-in-small-spaces-lab-testing-theamazing-shrinking-room

Laboratory Testing of Heat Pump Water Heater Performance: Impact of Airflow and Space Configurations

https://etcc-ca.com/reports/code-readiness-laboratory-testing-heat-pump-water-heater-performance-impact-airflow-and