

Achieving Passive House for Multi-Family Residential Projects

Orchards at Orenco Case Study

August 20, 2014

PRESENTED TO: BESF

Jeff Becksfort, PE LEED AP

inspire interpret integrate

Presentation Outline

- Introduction toPassive House
- Case Study:
 Orchards at Orenco
 Housing
- Differences betweenPHPP and eQUEST
- Lessons Learned

Beginnings of Passivhaus

The Passivhaus standard

- Developed in Germany
- --> Founded in the early 1990s
- Professors Bo Adamson (Sweden) and Wolfgang Feist (Germany)
- The first Passivhaus Standard dwellings were in Darmstadt in 1991

Passive House Institute US (PHIUS)

- → Founded in 2007
- Goal: bring the passive house strategy <u>back</u> to the US

"Passivhaus or 'Passive House' is the fastest growing energy performance standard in the world with 30,000 buildings realized to date" – Passivhaus.org/uk

Introduction to Passive House The Principles

Passive House is a performance based certification system – not a prescriptive path.

Based on:

- Superinsulation
- -> Airtightness
- Heat Recovery
- Ventilation
- Passive Solar Gain

Performance Criteria

Building Energy Demand:

Heating = 4.75 BTU/hr-sf

Primary Energy Demand = 38 kBTU/sf-year

Airtightness = **0.6** ACH₅₀

Compliance Tools & Verification

PHPP (Passive House Planning Package)

- Excel-format Spreadsheet
- Steady-State Heat
 Balance Calculations
- Monthly Climate Data Averages
- Simplified HVAC
 Efficiencies / Capacities
- Standard Schedules for
 Occupancy and Loads
- Validated Results in European Installations

© Passive House Institute

Energy balance and Passive House Design Tool for quality approved Passive Houses and EnerPHit retrofits

Case Study

Orchards at Orenco

Project Team

Why Passive House?

- Trends in Europe that show Passive House complexes offer better acoustics and air quality, see less turnover and lower maintenance costs
- Affordable living not just affordable housing
- Reduced utility cost for building and tenants
- Assessing the Passive House strategy cost vs. benefits
- Allow development of the Passive House standard

Where is this project?

Project Statistics

- Three stories
- 57,750 square feet
- 7,500,000 Budget \$130/sf
- < \$25,000 annual income</p>

Rendering

Typical Floor Plan

Passive House Strategies

Ankrom Moisan

THE ANATOMY OF A PASSIVE HOUSE

Typical Wall

Passive House Wal

From the pages of Dwell to the New York Times, to various other architectural journals, chances are you've heard about Passive House. Often touted as "homes you can heat with a hair dryer," Passive House buildings boast energy loads low enough to make even the most environmentally-conscious homeowners drool. While the principles of the standard were born in North America in the 1970's, it was a German physicist, Dr. Wolgang Feist, who developed the standard and built the first prototype in 1990.

Since then, the standard has taken off in many European countries and began to make inroads in the United States. Today, Passive House US has 97 projects registered, mostly single-family houses, but also small schools, community centers, churches,& commercial buildings. REACH Community Development is exploring the benefits and

challenges of applying Passive House building strategies to a development in Hillsboro, Oregon's Orenco station district. The fully realized Orchards at Orenco development will provide 150 units of workforce housing built in 3 phases. During Phase One of the project, REACH will build a 57-unit Passive House-certified apartment building, thus demonstrating the applicability of Passive House concepts to affordable multifamily housing at a scale that is currently unprecedented in the United States. Here are just some of the components that make up a Passive House:

ious Air Barrie

The Passive House standard has rigorous requirements for building airtightness. In order to achieve this, Passive House buildings have continuous air barriers that cut down on heat losses due to Inflitration. During the detailing and construction of a building, the design team and construction crew must be prudent in maintaining the continuity of the air barrier.

The ground floor slab sits on 4" of high-density foam Insulation. The Insulation continues underneath the structural footings and wraps around the vertical slab edge to meet the wall insulation

BENEFITS TO TENANTS

educed outdoor noise inside apart novative, forward-thinking living

OTHER SUSTAINABLE FEATURES Energy Star appliances
 Low-flow plumbing fixtures

Envelope Performance

R-39 Walls
R-81 Roof
R-18 Floors
R-6.4 Windows

17% Glazing

HVAC Systems

- Electric Cove Heat
- Heat Recovery Units
- Heat Pump Heating / Cooling

Modeling Methodology

Modeling for Energy Trust Incentives:

- eQUEST model v3.64
- Baseline HVAC System: PTHP (all electric)
- Bundled Envelope Measures & HVAC System Efficiency
- \rightarrow Infiltration (0.82 ACH₅₀ vs. 0.6 ACH₅₀)
- Low-flow Plumbing Fixtures

Typical Energy End Uses - Residential

Predicted Energy End Use

Energy Use Comparison

Passive House Energy Analysis

(Expected Behavior)

(Conservative Behavior)

4/25/14

Passive House Energy Analysis

Total Source Energy EUI:

Passive House Standard:

Percent of Limit:

36.0 kBTU/sf.yr

38.0 kBTU/sf.yr

95%

The Orchards at Orenco - Phase I

Passive House Energy Analysis Summary

Permit Set / PHIUS Pre-certification Submission

5/8/2014

RESULTS:

Space Heating Peak Load:	2.46	BTU/hr.s
Passive House Standard:	3.17	BTU/hr.s
Percent of Limit:	78%	

SSUMF	PTIONS:									
ivelope:			R-value							
	Walls:	2x10 + 1.5" mineral wool	39		Heating System:	80% Heat Pump, COP = 4.31	(average all systems)	Appliances:	Refrigerator/Freezers:	370 kWh/yr ES rating or better
		advanced framed, 15% framing factor				delivered via HRV supply & ind	oor heads		Dishwashers:	275 kWh/yr ES rating or better
		solid blocking @ exterior structural suppo	orts			20% Electric-Resistance (in apartm	nents)		Clotheswashers:	184 kWh/yr ES rating or better
	Windows:	EuroLine T/T uPVC overinsulated	6.4	R-frame		window watcher shut-off			Clothesdryers:	gas
	Glazing N/S:	LoE 180/180 Ar, SHGC=0.55	9.0		Ventilation System:	Cook ERVs 75% effect	iveness 0.80 W/cfm		Range/Oven:	electric
	Glazing E/W:	LoE 366/180 Ar, SHGC=0.25	7.5			Apartment Ventilation:	50 cfm/apt, cont.		Range Hood:	recirculating; charcoal filter
	Residential Doors:	Euroline T/T Door uPVC overinsul.	4.3	R-frame		50 cfm add'l ventilation to sec	ond bedrooms in summer		Elevator:	3000 kWh/yr
		ADA sill (assumed 4600 Series)				Comm. Rm. Ventilation:	85 cfm, cont.			i.e. Thyssen Krup, MRL Traction
	Glazing;	same as above				Office Ventilation:	15 cfm, cont.			
	Lobby Doors (4):	Klearwall PH Door	6.7	R-frame		Lobby Ventilation:	50 cfm, cont.			
	Glazing:	Saint Gobin 0.5/0.5 & Opaque Panel ,	11.4			Whole-Building Ave:	0.58 ACH			
	Corridor Doors (12):	Select Door Wood Fire-rated Door	3.1	R-frame		Duct Insulation, HRV to Exterior:	4" FG w/ vapor barrier	Lighting:	Residential:	100% fluorescent/LED
	Glazing:	Ceramic glass (18"x24")	0.7			No direct exhaust fans within PH	envelope		Non-residential:	0.8 W/sf occupied areas
	Roof:	12" Polyiso over Sheathing	81							0.4 W/sf storage/circulation areas
	Slab: Field:	4" EPS II	18							occupancy sensing all non-residential areas
	Interior Footings:	I" EPS IX	6							
	Perimeter Footings:	4" EPS IX	19		DHW System:	Central Gas Heater w/ Trace Htg	on Lines	Cooling Strategy:	HRV supply air tempered by heat pump; supply temp ~50F	
	Vertical Perimeter:	4" EPS II	18			Water Heater efficiency = 99%	(nominal)		HRV airflow increased by 50cfm in each 2 bedroom unit during summer.	
	Airtightness:	0.60 ACH @ 50 Pa				Bradford White EF-100T-199E-3N(A)			HRV heat recovery bypass automated by thermostat	
						Hot Water Line Insulation: min. 3/4" continuous			Windows open night only if necessary, closed during day	
Other:	Thermal Mass:	Standard drywall				(11) hot water riser lines assumed per floor				
	I inch gypcrete floor topping w/o carpet Thermal Bridging: Intermittent solid blocking at decks/awnings 24 Plumbing vents, 10 roof drains, 3 radon vents			Low-flow fixtures throughout						
(all vents/drains insulated through attic)										

NOT	
1	Floor area and window area inputs based on 50% CD drawings (12/5/13) with following clarifications: - where adjoining windows are not mulled together, the post between must receive same over-insulation as the wall condition, - all doors are 3' x 8' nominal
2	Envelope Configuration: Laundry room, elevator enclosure, and end wing stair/storage areas are outside the Passivhaus envelope. No active heating is supplied to these spaces (aside from a 500W frost-prevention heater in the maintenance room). Specified wall insulation, airtightness layer, doors and windows segregate these spaces from the building proper. Access to mechanical pods is assumed to be from interior ceiling hatch (within the thermal envelope). All roof hatches occur at end-wing stairs, outside the thermal envelope.
3	Lighting, equipment, plug loads and hot water usage is based upon Passivhaus default values (used as the basis for PH certification). Actual loads are anticipated to be higher which may present periods of occupant discomfort due to overheating. Strategies to encourage occupant behavior toward energy efficiency are highly encouraged (i.e. lobby dashboard reporting each units' red/yellow/green status toward their energy usage target with more info on how to decrease energy usage such as reducing internal loads and night-flush ventilation).
4	This analysis includes a thermal bridge analysis of a typical solid blocking detail assumed at exterior structural connections. Intermittent blocking (not continuous) assumed at decks, awnings, unconditioned wall junctions, etc. Also included is a thermal bridge at all roof vents/drains, assuming they are insulated as they pass through the roof truss cavity. Vapor impermeable barrier should surround this insulation to avoid condensation.

Where do we stand?

Building Energy Demand	Target	Design
Heating (BTU/hr-sf)	3.17	2.46
Primary Energy Demand (kBTU/sf-year)	38	36
Airtightness (ACH50)	0.6	TBD

Comparing Design Tools PHPP & eQUEST

Comparing Design Tools PHPP & eQUEST

Category	eQUEST	РНРР
Cost	None	\$\$
Training	On line Forums & User Groups	Training through PHIUS & User Groups
Model Format	DOE-2 engine	Excel
Initial Set Up	Wizard	Drawing Take-offs
HVAC Systems	Complex / Modifiable	Simple – efficiency based
Parametric Analysis	Yes	No
Accepted by ETO	Yes	No
Hourly Simulation	Yes	No

Comparing Design Tools PHPP & eQUEST

- Who can use it?
- When each is most effective?
- What are the uses for each program?
- What do they not do?

Lessons Learned Topics

- Importance of Passive House Boundary for Commercial Buildings
- Optimizing Ventilation
- Kitchen Hood Exhaust
- Balance Point & Overheating
- Material & Equipment Availability
- Passive House US & Passivhaus Differences

Importance of Passive House Boundary

Infiltration Testing:

- Stairs Stack Effect
- Elevators & lobby stack effect
- Laundry exhaust
 & make-up air
- Garbage Rooms exhaust & make-up air

Optimizing Ventilation

- Tightly sealed building requires complete ventilation system
- Heat recovery is necessary
- Higher airflow = more energy
- Balance IAQ with energy efficiency
- Providing sufficient exhaust

Kitchen Hood Exhaust

 Ducting kitchen hood exhaust duct outdoors is problematic

Re-circulating hoods meet Passive House goals but are an IAQ concern

 Review kitchen hood ducting requirements with AHJ

Balance Point & Overheating

Balance Point & Overheating

Solutions:

- Reduce Internal Loads
- → Shading
- Operable windows
- Cooling of ventilation air to take the edge off

Material & Equipment Availability / Selection

PHI ratings for HRV's differ from ratings by AHRI.

PHIUS will now accept AHRI rated efficiencies.

Material & Equipment Availability / Selection

Summary

Next Steps

Complete Construction
 Verify Performance
 Final Passive House Verification

Summary

Conclusions

We need more examples of Passive House being applied to different application.

- Push the "envelope".
- The Passive House process is becoming more refined to reflect US conditions.
- More widespread adoption will reduce costs just like what we saw happen with LEED.

