Architecture 2030 for Labs

OHSU Knight Cancer Research Building

August 15, 2018
Presented to BESF
Outline

Overview
- Project Summary
- Energy Use in Labs
- Benchmarking and Energy Targets

Our Building
- Energy Trust Baseline
- Energy Conservation Measures
- Final Results
PROJECT GOAL

Ending cancer as we know it.

The Knight Cancer Research Building will be a key element in recruiting approximately 250 of the world’s leading cancer researchers and physicians as they lead the charge in curing cancer.
Phil Knight pledged $500M if $500M in private donations could be raised. The institute was seeded with $1B to create the building and populate it. Construction budget for the building was $160M.

TEAM:

SRG
PAE
OHSU
McCarthy
Andersen Construction

PROJECT SPECS
Pursuing LEED Platinum
333,000 square feet
IPD Contract with Co-Location and Triparty agreement
Project Overview
Project Overview

Rendering Courtesy of SRG
Project Overview

Rendering Courtesy of SRG
Project Overview
Energy Use in Lab Buildings

ESTIMATED ENERGY USE: 90.1-2010 ETO DATA

EUI (kBTU/sf/yr)

- LIGHTS
- PLUG LOADS
- SPACE HEATING
- SPACE COOLING
- VENT FANS
- OTHER MISC
- DOMEST HOT WTR

Religious Service
Warehouse & Storage
Office
Multifamily
Education
Service
Retail (other than Mall)
Public Assembly
Mercantile
Public Safety
Lodging
Health Care Outpatient
Health Care Inpatient
Health Care
Food Sales
Food Service
Labs
I²SL Database Peer Facilities

<table>
<thead>
<tr>
<th>I²SL Peer Facilities</th>
<th>EIU (Kbtu/sf/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2,500,000</td>
</tr>
<tr>
<td>2</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>3</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>4</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>5</td>
<td>$1,700,000</td>
</tr>
<tr>
<td>6</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>7</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>8</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>OHSU KCRB Target</td>
<td>$1,000,000</td>
</tr>
</tbody>
</table>
Energy Use in Lab Buildings - Baseline

- LIGHTS
- PLUG LOADS
- SPACE HEATING
- SPACE COOLING
- VENT FANS
- OTHER MISC
- DOMESTIC HOT WATER

LABS
~170 kBTU/SF/YR
Energy Use in Lab Buildings - Baseline

High Internal Loads
- Up to 10 W/sf
- Increases cooling energy, fan energy, heat rejection

Exhaust Rates
- 4-6 air changes per hour
- Increases fan energy, heating, cooling, and heat rejection
- Increases reheat

High Lighting Energy
- Lighting, cooling, fans

Long Operating Hours
- All of the above
Choose appropriate baseline

- Savings target for 2015-2019 = 70%
- Renewable energy (including purchase) can be 20% of the 70%
BENCHMARKING & ENERGY TARGETS

Marquam Hill Campus: 325 EUI
Similar Usage Labs (I^2SL): 265 EUI
Team Architecture 2030 Target: 100 EUI
Energy Use in Lab Buildings – Energy Savings Strategies

Lower Internal Loads
- Lights & equipment

Reduce Outside Air
- Lower air change rates
- Reuse outside air
- Variable supply & exhaust
- Limit envelope loads to OA requirements

Heat Recovery
- Air-to-air
- Water-to-water

Zone Cooling to Reduce/Eliminate Reheat
- Low static air distribution
- Select efficient equipment
Oregon Code Baseline

- Envelope just meeting OEESC
- Code maximum lighting power densities
- VAV air handlers two per floor (one for offices, one for labs)
- Water-cooled chiller plant
- 80% efficient gas-fired boilers
Traditional VAV

Exhaust Air Valve
Supply Air Valve
Supply Diffuser
Fume Hood
Exhaust Grille

VAV Terminal Unit
Supply Diffuser
Return Grille

Lab
Office
Mechanical Control Plant: Traditional Chiller & Boiler Plant
Energy Conservation Measures (ECMs)

- Efficient Air-side HVAC System
- Efficient Central Plant
- LED Lighting with Occupancy Sensors and Daylight Control
- Condensing Water Heaters with Low-flow Fixtures
- Wind-based Laboratory Exhaust Control Strategy
Building Envelope

- Maximize daylighting opportunity
- Making sure systems work with loads
- Loads more driven by internal gains and ventilation than envelope
Air-side HVAC

- More effective zoning (offices, labs, support areas, auditorium)
- Heat recovery via glycol run-around loop
- Transfer fans move air from offices to labs to provide required air changes
 - Minimum flow schedules on lab zones with transfer fans account for OA requirements only
 - Other air supplied room-neutral via transfer, so space temperature impacts not a concern
 - Transfer fan energy accounted for with direct metered load
 - Zone-by-zone hourly reports examined to verify desired airflows met
Transfer Fans
Heat Recovery
Air-side Improvements

After air-side improvements 131 EUI
Heat recovery chiller as primary cooling and heating source

Two other water-cooled chillers with cooling towers

Condensing gas boilers for remainder of heating needs

Free cooling capability through cooling towers when outdoor conditions allow

Variable speed pumping everywhere
Mechanical Central Plant: Heat Recovery Chiller
Water-side Improvements

After water-side improvements

EUI 129

Diagram showing energy use intensity (EUI) for different categories before and after improvements.
Lighting Upgrades

- All LED fixtures
- Occupancy sensors (credit taken where not code-required)
- Daylight harvesting with continuous dimming in south-facing labs and north-facing offices
Lighting Upgrades

After lighting upgrades 125 EUI
Service Hot Water Improvements

- Condensing gas-fired heaters for both domestic (lavatory) and process (laboratory) usage
- Low-flow fixtures in lavatories
Service Hot Water

123 EUI

After hot water improvements

1100
1250
1400
1550

kBtu/ft²/year

Code Baseline
Airside Improvements
Waterside Improvements
Lighting Improvements
Service HW Improvements
Architecture 2030 Target

EXT USAGE
DOMEST HOT WTR
VENT FANS
PUMPS & AUX
HEAT REJECT
SPACE COOLING
SPACE HEATING
PLUG LOADS
LIGHTS
Control of Laboratory Exhaust

- Use VFDs with redundant fans to reduce fan energy
- Select number and speed of fans to meet necessary plume
- Wind study/mock-up performed to inform control sequence
- On-site weather station provides wind conditions
Control of Laboratory Exhaust

<table>
<thead>
<tr>
<th>Fan System:</th>
<th>LEF-3,4,5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Criterion:</td>
<td>400</td>
</tr>
<tr>
<td>Stack Height:</td>
<td>30ft</td>
</tr>
<tr>
<td>Volume Flow Rate:</td>
<td>37,000 cfm</td>
</tr>
<tr>
<td>Exit Velocity:</td>
<td>2,775 fpm</td>
</tr>
<tr>
<td>Anemometer Height:</td>
<td>12ft above the CLSB Penthouse</td>
</tr>
</tbody>
</table>

Minimum Fan Speed

Wind Direction	Min	Max	1	2	3	4	5	6	8	10	12	14	16	19	22	25	
	350	10	48%	50%	58%	61%	68%	78%	78%	94%	94%	90%	100	100	100	100	100
	10	30	48%	50%	55%	60%	68%	75%	95%	95%	100	100	100	100	100	100	100
	30	50	48%	47%	52%	58%	63%	74%	85%	85%	100	100	100	100	100	100	100
	50	70	48%	17%	31%	43%	54%	73%	90%	100	100	100	100	100	100	100	100
	70	90	48%	17%	39%	41%	52%	61%	70%	85%	95%	100	100	100	100	100	100
	90	110	48%	23%	36%	44%	52%	63%	72%	72%	73%	73%	72%	71%	71%	71%	71%
	110	130	48%	34%	53%	70%	84%	57%	100	100	100	100	100	100	100	100	100
	130	150	48%	35%	54%	71%	80%	90%	100	100	100	100	100	100	100	100	100
	150	170	48%	35%	53%	88%	63%	98%	100	100	100	100	100	100	100	100	100
	170	190	48%	46%	59%	86%	74%	77%	70%	76%	76%	75%	71%	68%	65%	62%	56%
	190	210	48%	52%	61%	66%	67%	66%	57%	50%	46%	42%	42%	42%	42%	39%	39%
	210	230	48%	51%	60%	65%	69%	54%	62%	54%	49%	45%	42%	42%	43%	42%	38%
	230	250	48%	30%	29%	28%	25%	22%	20%	15%	13%	14%	16%	17%	15%	12%	12%
	250	270	48%	11%	13%	13%	12%	12%	11%	9%	8%	8%	6%	6%	6%	8%	8%
	270	290	48%	14%	13%	12%	11%	10%	10%	9%	8%	8%	6%	6%	6%	8%	8%
	290	310	48%	34%	34%	35%	30%	27%	24%	16%	15%	14%	15%	17%	20%	15%	15%
	310	330	48%	36%	43%	47%	50%	51%	46%	46%	43%	40%	36%	37%	37%	37%	37%
	330	350	48%	48%	54%	56%	60%	61%	61%	60%	57%	55%	54%	53%	51%	50%	47%

Local anemometer wind speed
Laboratory Exhaust

107 EUI

After exhaust control
Creating a better environment

Marc Brune, PE
Associate Principal

James Cullin, PhD, PE
Project Engineer

marc.brune@paengineers.com
james.cullin@paengineers.com

503–226–2921

522 SW 5th Ave, Suite 1500
Portland, OR 97204